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Introduction
Microscopy and imaging has played a monumental 

role in modern science, and continues to do so. Biologists 
and many other fields of science have employed, what is 
now conventional optics, since at least the seventeenth 
century [1]. Even now, modern nano- and micro-fabrication 
facilities still rely heavily on basic to advanced micro- 
scopes for imaging and characterizing a wide range of 
objects such as integrated electrical circuits (ICs) and 
micro electromechanical devices (MEMs). In addition, 
one of the revolutionary micro-fabrication techniques, 
photolithography, relies on the physical principles of 
classical optics [2]. Nevertheless, there is still one major 
hurdle to overcome with optical microscopy and related 
technolo- gies, namely, the diffraction limit.

The diffraction limit is a physical effect which restricts the 
smallest feature size that can be resolved in an image to about 
half the imaging wavelength, ∼ λ/2. In terms of the optical 
spectrum (∼400–800 nm), this limits the smallest resolvable 
feature size to ≥ 200 nm. This physical phenomena is well 
explained using classical electrodynamics and Fourier 
optics; however, current technologies which can overcome 
this diffraction limit or which allow sub-wavelength (optical) 
resolution are either destructive (such as scanning electron 
microscopy and transmission electron microscopy) or 
invasive (atomic force microscope and scanning tunnelling 
microscope).

The emerging field of metamaterials may provide 
the solution to overcoming the diffraction limit through 
the ability to control and manipulate fundamental light-
matter interactions. This is achieved by tailoring the 
bulk and macroscopic material properties by controlling 
the sub-wavelength structure of a material. Twentieth 
century advances in nanofabrication have allowed the 
nanosctructure of devices to be tailored at will so that 
the fabrication of these metamaterials and their exotic 
electromagnetic properties are now possible [3]. In natural 
materials, the bulk and effective properties of a material is 
governed by the local arrangement (domain) of atoms, and 
the atomic lattice. A metamaterial is an artificially structured 
material with sub-wavelength structures known as meta 

atoms which govern the bulk electromagnetic properties 
as shown in figure 1.

In particular, Hyperbolic Metamaterials (HMMs) have 
shown great promise to overcoming the diffraction limit 
[3, 4] by allowing evanescent (decaying) EM waves 
which cannot be imaged using conventional optics, to 
propagate and hence be detected and imaged. The exotic 
property in HMMs which gives rise to this phenomena is 
an unbounded, hyperbolic dispersion relation. In natural 
transparent materials, the dispersion relation is bounded 
and spherical or ellipsoidal in shape.

Outlined here is the physics necessary to analyze the 
principles of sub-wavelength imaging and overcoming 
the diffraction limit, understanding the theory governing 
HMMs, and designing and testing the performance of a 
HMM for use in the infrared (IR) region of the EM spectrum. 
The design of a HMM based device employing multilayers 
of InGaAs/AlInAs is summarized along with simulations of 
the performance of the device. These materials were first 
proposed for use in HMMs by Hoffman [5], however the 
scope of that work was on negative refraction; therefore, 
the theoretical and design developed and presented here, 
for applications in sub-wavelength imaging, is new and 
state-of-the-art.
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“Meta Atoms” 

FIG. 1 In natural materials, the bulk EM properties are governed by the arrange-
ment of atoms. In metamaterials, the bulk EM properties are governed by 
artificially structured “Meta atoms”.
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Sub-Wavelength Imaging in the IR
Plane Wave Propagation in Anisotropic Uniaxial Media

Maxwell’s equations  for the time dependent electric 
and magnetic fields can be decoupled to yield the wave 
equations for EM waves, that is light in a sourceless region

      (1)
  
where c is the speed of light, and    and   are the relative 

magnetic permeability and electric permittivity tensors 
respectively.

In the optical and IR region of the EM spectrum, almost 
all materials do not have a magnetic response so it is safe 
to assume  , the identity tensor. In addition, if the 
medium is uniaxial, then the dielectric tensor is of the form

      (2)

where the dielectric constant along the x- and y- directions 
is εx, and the dielectric constant along the z-direction is εz. 
This type of material has a planar symmetry in the xy-plane 
and the dielectric tensor has two unique components, 
namely ε|| in the xy-plane and ε

⊥
 in the direction normal to 

the xy-plane.
These wave equations give rise to plane wave solutions 

of the form
      (3)

provided that the propagation wavevector  , satisfies the 
equation [6]

      (4)

This describes a wavevector surface from which the details 
of propagation of different types of    polarizations in the 
media are obtained.

From equations 3 and 4, it then follows that for uni-axial 
materials described by equation 2, there are two unique 
types of plane waves described in equation 3: (a) Where                  
is parallel to the xy-plane and (b) where   is parallel to 
the xy-plane. These correspond to transverse electric TE 
polarizations (ordinary waves) and transverse magnetic 
polarizations TM (extraordinary) respectively.The  re lat ion  
between     and     for each case are easily obtained 
through Maxwell’s Equations:          and                . 
For the remainder of this discussion, only TM polarization 
will be treated, however, analogous arguments and 
derivations can performed for TE waves.

For TM polarized light, equation 4 reduces to the well 
known dispersion, or isofrequency relation for extraordnary 
waves in an uniaxial medium

      (5)

with         .

Diffraction Limit
Vacuum and most natural dielectrics (glasses) are not 

uniaxial, but isotropic so that     
Equation 5 then becomes

      (6)

and the wave vector surface described by equations 5 and 
6 is a sphere1. In terms of imaging,we wish for an object in 
the xy-plane to be focused and imaged in the x′y′-plane, 
some distance z from the object, figure 3. From Fourier 
Optics, the electric field corresponding to the object in the 
xy-plane (WLOG assume z = 0) can be decomposed into 
plane waves (spatial frequencies)    and    through a Fourier 
transform into a Fourier (or angular) spectrum as [7]

      (7)

This Fourier plane wave spectrum propagates along the 
z-axis (imaging axis) as [7]

      (8)

where   is derived from from the isofrequency relation, 
equation 6, as   .The image in the x′y′ 
plane (at z = z > 0) then corresponds to the inverse Fourier 
transform of this spectrum (eq 8)

      (9)
 

However, from equation 6 we see that for large    or   , 
then is complex, and the       term in equation 9 is 
exponentially damping; these waves are evanescent and 
decay before reaching the far-field (fig 5a). That is, the 
high spatial frequencies necessary to make up the sharp 
features of the object, do not propagate and therefore 
cannot be detected nor imaged in the far-field2. This is 
known as the diffraction limit and this concept is illustrated 
in figure 4.

The maximum magnitude of spatial frequency 
wavevector allowed to propagate and hence contribute 
to a far field image is given by equation 6 and is written 
explicitly as

      (10)
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1. For the case of uniaxial crystal propagation, both ε
||
 > 0 and ε

⊥
 > 0, so that the 

wavevector surface is an ellipsoid, and the remaining diffraction limit arguments 
still apply but must be modified slightly.

2. Far field refers to an image plane with z > λ (image field).
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FIG. 2. Schematic of the dielectric 
tensor for a uniaxial medium. There is a 
planar symmetry in the xy-plane so that 
ε
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, and ε
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 = ε
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.

FIG. 3. In Fourier Optics the spatial 
frequencies making up the electric field 
of an aperture or object in the 
(x, y, z = 0) plane are propagated to the 
imaging plane (x′, y′).
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This corresponds to a minimum resolvable feature size 
of                  .   For vacuum, n ≈ 1.5 and the minimum 
resolvable feature size is d ≈ λ/2.

Beat the diffraction Limit
There are several ways to obtain the near field 

information (high spatial frequencies) of an object such as 
atomic force microscopy (AFM), or a near field scanning 
optical microscopy (NSOM). However, these methods are 
invasive as they require that a detector (usually a very fine 
tipped needle) be placed very close (<< λ) to the object 
to be imaged [2].Therefore, these sub-diffraction imaging 
techniques are not suitable for many type of samples.

Other methods of obtaining very high resolution images 
are scanning electron microscopy (SEM) and transmission 
electron microscopy (TEM) [2]. These methods utilize the 
wave nature of electrons (through the de Brogolie relation), 
and therefore are subject to the diffraction limit as well, 
however the characteristic wavelength of the electrons can 
be made much smaller than that of optical and IR light. 
As a result, the smallest resolvable feature size is smaller 
than that obtained with conventional optical techniques. 
However, SEM and TEM tend to be destructive to the 

sample.
Metematerials provide a new non-destructive/invasive 

route to allowing these high spatial frequency modes, 
which normally decay in vacuum and natural materials, 
to propagate and reach the far field, allowing them to be 
sensed and imaged. 

In the following section, I present a new type of 
metamaterial, Hyperbolic Metametierials, which allows all 
spatial frequency modes to propagate into the far field.

HYPERBOLIC METAMATERIALS
Hyperbolic Metamaterials (HMMs) are an artificially 

structured material with a dielectric tensor with an extreme 
anisotropy. 

 In short, HMMs behave like a metal (with ε < 0) in one 
direction and like a dielectric (ε > 0) in another. Planar 
HMMs are uniaxial and the dielectric tensor has the form

      (11)

with ε
||
 > 0 and ε

⊥
 > 0. 

This extreme anisotropy yields the exotic behaviour of 
HMMs: hyperbolic dispersion. With this type of extreme 
anisotropy, equation 5 yields a wavevector surface of a 
hyperboloid.

      (12)

Using this relation along with the Fourier spectrum 
arguments made in section II B, all high spatial   frequencies 
are allowed to propagate inside an HMM.That is, for any 
magnitude of      , there is always a real    , and the 
whole Fourier or Angular spectrum is propagated into the 
far field [3]. Therefore, HMMs have a strong potential for 
sub-wavelength imaging in the far field, that is the ability to 
beat the so called diffraction limit. The isofrequency curves 
for an ideal HMM and vacuum are shown in figure 5.

HMMs are not found naturally in nature so must be 
designed and fabricated to have the required bulk or 
effective medium properties. Advances in nanofabrication 
have allowed the nanoscopic structure of materials to 
be tailored at will, allowing bulk HMM properties to be 
observed for applications in imaging [4]. In the Effective 
Medium Theory section below, a novel technique to 
realize a bulk planar medium with an extreme anisotropy 
characteristic of HMMs is outlined and discussed.

  
HMM Design: Effective Medium Theory
Introduction

If the structure of an object is much smaller than the 
wavelength of light interacting with the object, then the 
response of EM radiation interacting with the structure can 
be characterized by a bulk or effective medium. Information 
acquired through measurements on the incident, reflected, 
and transmitted light will yield properties of an effective, 
homogeneous medium, not the properties of the media 
making up the sub-wavelength structure.

Effective medium theory (EMT) or effective medium 
approximation is a technique to average these sub-
wavelength properties, and predict the bulk response of EM 
radiation interacting with the structure. Presented in detail 

FIG. 4. A highly localized EM source, object, or an object with sharp features has a 
broad spatial frequency spectrum (fourier spectrum). The high spatial frequencies 
correspond to evanescent plane waves which decay and do not reach the far-
field. As a result, the reconstructed image has lost information, and any original 
feature smaller than about λ/2 is blurred. Furthermore, objects closer than ∼ λ/2 
to each other can not be resolved using traditional optics.

kz
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�|| = �⊥ = 1
HMM

�|| > 0
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FIG. 5. (a) In Vacuum and natural dielectric materials, high spatial frequency 
modes are not supported and are evanescent. High spatial frequencies (large k

x
) 

above εk
0
 yield imaginary propagating wavevectors (k

z
), and these components of 

the Fourier (angular) spectrum of an object do not reach the far field (image field). 
(b) HMMs have a hyperbolic dispersion relation which supports all spatial frequen-
cies. This implies that the whole Fourier or Angular spectrum is propagated to the 
far field, making HMMs ideal for subwavelength imaging appliations.
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below is an effective medium theory for planar multilayer 
structures, and a novel way for designing HMM behaviour 
in a metal/dielectric multilayer structure.

Effective Medium Theory for Multilayer Structures
Consider the multilayer structure shown in figure 6 in 

which the wavelength of the interacting electromagnetic 
wave λ is much larger than the layer thicknesses d1 and 
d2. For brevity and simplicity assume d1 = d2  = d. The 
derivation for the more general case is analogous and will 
be stated later. The electric flux density in each medium is 
related to the electric field as 

      (13)

where     is the dielectric tensor. Let each medium on its own 
be isotropic so that the dielectric tensor can be represented 
by a dielectric constant, say        for medium 1 and               
 for medium 2. Therefore,       and   
Since the wavelength of light is much larger than the layer 
thickness (λ >> d) then     does not vary over several layers 
of medium 1, and similarly,     does not vary over several 
layers of medium 2,then it follows that the average value 
of throughout the structure can be determined by 
analyzing the relation between    and    at one interface 
between medium 1 and medium 2. The average value 
of       will then be related to the average electric field by the 
effective dielectric tensor

      (14)

with       . The electromagnetic boundary 
conditions at an interface between medium 1 and medium 
2 can be derived from Maxwell’s Equations [8]

      (15)
      (16)

By employing the second of the two above boundary 
conditions, the average electric flux density parallel to the 
interface is 

      (17)

where equation 16 implies        . The parallel 
component of the effective dielectric tensor is arithmetic 
mean of the two dielectric constants of the two media.

Similarly, employing the first of the two boundary 
conditions, the average electric flux density perpendicular 
to the interface is computed as

      (18)

where equation 15 was used to relate   and . 
The perpendicular component of the effective dielectric 
tensor is the harmonic mean of the two dielectric constants 
of the two media.

Therefore, the effective dielectric tensor is anisotropic 
and can then be written as

      (19)

where the parallel components lie in the xy-plane and the 
perpendicular direction is considered the z-direction.

When , the above can generalized to
      (20)

      (21)

with the weighting factor       .
 
This shows that a general anisotropic uniaxial medium 

can be fabricated from a periodic multilayer stack with the 
layer thicknesses much smaller than the desired design 
EM wavelength. More subtly, however, the thickness of the 
layers should be chosen so that the quantization of energy 
levels in the system is irrelevant [5].

 
Effective Medium Theory For HMM Design

Referring to figure 6 and equations 20 and 21, if material 
1 is a metal and material 2 is a dielectric (ε

||
 < 0 and ε

⊥
 < 0), 

then the effective medium dielectric constants are also of 
opposite signs. That is,

      (22)

which is the exact extreme anisotropy required for HMM 
behaviour.

Therefore, a simple multilayer structure with alternating 
layers of dielectric and metal has the bulk EM response 
required for a HMM.

Design Results: HMM in IR
Materials
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FIG. 6. Multilayer stack used for effective medium theory analysis.
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For HMM design in the IR region we require a metallic 
material and a dielectric material to employ the EMT design 
technique outlined in the previous section.

An obvious choice for the metallic material would be a 
traditional metal (Ag, Au, etc), however, in the IR losses are 
much too high. Another possible choice is silicon carbide, 
SiC, which displays metallic behaviour in the IR [9], however, 
the dispersion is much too rapid and the losses in the 
material are significant, making a desired broadband EMT 
design for imaging applications ineffective. For this design, 
InGaAs was chosen as it displays metallic behaviour in the 
IR which can be tailored at will with Si doping. The losses 
in InGaAs are also relatively low.

As outlined by Hoffman [5], the dielectric constant for 
InGaAs can be computed using the Drude Model (free 
electron oscillator) for metals

      (23)

where ε∞ = 12.15 is the background dielectric constant, 
and γ = 0.1 × 10−12 s−1 represents losses in the system 
and reflects the collision rate of electrons with atoms. The 
plasma frequency  ωp can be tailored through Si doping: 
a donor atom such as phosphorus diffuses into Si and 
replaces an Si atom in the regular Si crystal lattice; each 
donor donates a free electron capable of conducting 
electricity. If the concentration of donor atoms is nd, then 
the plasma frequency is given in the Drude model as

      (24)

where e is the free electron charge, ε
0
 is the permittivity 

of free space, and    is the effective mass of electrons 
in InGaAs. Under moderate EM intensities and a doping 
density of         , the effective electron mass in 
InGaAs is   [2] and the plasma frequency is 
evaluated as

For the dielectric, AlInAs was chosen as it displays very 
little dispersion in the IR and negligible losses.For most 
of the IR spectrum       . Figure 7 shows the 
simulated dispersion of the dielectric constants for AlInAs 
and InGaAs in the IR.

Furthermore, highly crystalline films of these materials 
can be grown using molecular beam epitaxy.

Since AlInAs/InGaAs are lattice matched, the multilayer 
structure will have a very low intrinsic stress, and the 
layer interfaces will be very smooth results in ideal fresnel 
reflection and transmission [5].
Effective Medium Dielectric Tensor

Using the effective medium design techniques outlined 
above (equations 20 and 21), along with the material 
properties derived in the previous section, the effective 
medium constants (ε

||
 and ε

⊥
) for a multilayer stack of 

InGaAs/AlInAs were computed and optimized.
To minimize reflections (with imaging in mind), we 

require ε
|| 
∼ 1. Therefore, I selected ε

||
=1 at a wavelength of 

λ = 10 μm, roughly the centre wavelength of the desired 
operation range. In addition, to reduce the total number of 
layers needed while keeping d << λ, I chose dAlInAs = 80 nm. 
Then from equation 20, the InGaAs thickness is computed 
as dAlInAs =130.5 nm. With reference to equations 20 and 21, 
this corresponds to a weighting factor ρ = 0.62.

Using these layer thicknesses, equations 20 and 21, 
and the dielectric constants of the InGaAs and AlInAs 
computed in section VA, the effective dielectric tensor was 
calculated. From this simulation, it was determined that 
the AlInAs/InGaAs multilayer displayed HMM behaviour in 
the wavelength region  $8.8-10.5 μm, for a total bandwidth 
of ∆ =1.7 μm. However, starting ∼ 10.3 μm losses begin 
to become significant, and propagation lengths inside the 
bulk material (overall multilayer structure) would diminish. 
Figure 8 shows the wavelength dispersion of ε

||
 and ε

⊥
.

Simulation of HMM Behaviour At A Single Spatial 
Frequency

The very exotic and useful behaviour of HMMs for 
applications in sub-wavelength imaging is the fact that 
normally evanescent modes (high spatial frequencies) are 
allowed to propagate inside an HMM.

To demonstrate this behaviour, I simulated an 
evanescent, decaying, plane wave incident upon a slab of 
HMM (effective medium theory ε

||
 and ε

⊥
, and an evanescent 

wave incident upon the exact multilayer structure (εInGaAs, 
εAlInAs).

Using the fresnel reflection coefficients for TM polarized 
light incident upon a slab of anisotropic medium (see 
Fowles [6] for example ), and the expressions for the 
plane waves developed in section IIA the intensity of 
an evanescent plane wave (λ = 9.8 μm) incident upon a 
slab HMM with the effective medium constants shown in 
figure \ref{HMMDispersion} was modeled. The simulation 
confirmed the expected bulk behaviour of the HMM; 
namely, evanescent waves are captured by the HMM 
and are allowed to propagate into the far field. Figure 9 
illustrates this result. The figure shows the field profile as 
the decaying wave propagates in the z+-direction; the x- 
and y-directions have been supressed. We see nearly a 
10X increase in the signal strength at the exit side of the 
HMM slab as compared to vacuum.

To test the validity of the effective medium design and 
simulation techniques used, a plane wave incident upon the 
exact InGasAs/AlInAs multilayer structure was modelled.
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FIG. 7. AlInAs shows very little dispersion in the IR and remains ≈ 10.23. The real 
and imaginary parts of εInGaAs is computed using the Drude Model for metals at 
a Si doping level of 8 × 1018 cm−3.



16

W. D. Newman / Eureka 3 (2012)

Using a transfer matrix method for obtaining the 
propagation amplitude constants within multilayer 
structures (see Yeh [10] for for derivation and discussion 
of transfer matrix technique), and the form of the fields for 
plane waves developed in section IIA, the intensity of an 
evanescent plane wave incident upon the designed AlInAs/
InGaAs multilayer stack was simulated. As shown in figure 
10, the simulation shows the fact that although there is very 
subtle physics governing the individual layers3, the bulk 
response of the multilayer structure agrees very closely 
with that observed for the effective medium slab, therefore 
confirming the validity and accuracy of the effective 
medium technique for designing HMMs.

We now have confirmation that the multilayer of InGaAs/
AlInAs does posses the exotic HMM behaviour required for 
sub-diffraction imaging. Below, I show that sub-wavelength 
resolution of a radiating point source such as an excited 
C-O bond can be obtained in the far-field by utilizing a 
InGaAs/AlInAs metameterial.

Green’s Function Formalism of Scattering and 
Emission: Sub-wavelength Imaging
Introduction

Scattering, diffraction, and emission centers can be 
modelled using a radiating point dipole. The details of the 
near-field (the propagating and evanescent modes), must 
be obtained through the Green’s function formalism of EM 
sources.

To demonstrate sub-wavelength imaging, I simulated 
the emitted electric field intensity of a point dipole above 
a slab of the designed effective medium AlInAs/InGaAs 
HMM. 

Derivation and Results
If there is a localized current source     in vacuum then 

if we assume time harmonic fields (i.e. all fields and the 
current source oscillate in time at a frequency ω), Maxwell’s 
wave equation for the resulting electric field becomes

      (25)

again with        . This is the well known vector Helmholtz 
equation.

Now, a point dipole located at the position       can be 
described by a point current source        where    
gives the direction of the dipole (current source).

With this point current source, Maxwell’s wave equation 
can be solved using a Green’s Function Technique [7].

The derivation is quite in depth and only the results will 
be presented here. For simplicity, the dipole is oriented 
normal to the slab; in this way, all the EM radiation incident 
on the HMM is TM polarized [7]. By employing the Green’s 
Function Technique for solving the vector Helmholtz 
equation, the general form for the fields emitted by a 
radiating point dipole oriented along the z-axis (              ) 
and at a position z = d can be shown to be

      (26)

where the differential operator    being

      (27)

and 

      (28)

The double integral term represents the angular 
spectrum or plane wave representation of a scalar point 
source emitting spherical waves.

The Dyadic operator    , acting on this integral essentially 

3. The high kx evanescent waves excite surface plasmons polaritons on the 
metal layers, a collective oscillation of electrons within a metallic layer. These sur-
face plasmons then couple together between metallic layers to yield a collective 
response and allow the evanescent wave to propagate. See Maier’s book for an in 
depth discussion of this phenomena[11].

6 7 8 9 10 11 12 13 14
-100

-50

0

50

100

150

λ, [µm]

10.5 µm

∆ ≈ 1.7 µm

8.8 µm

Bandwidth of 
HMM

Re(ε⊥)

Re(ε||)

-1 -0.5 0 0.5 1 1.5 2
0

0.5

1

z/λ

In Vacuum

Incident on 
InGaAs/AlInAs 

Stack

Fi
el

d 
In

te
ns

ity
 (a

rb
. u

ni
ts

)
Fi

el
d 

In
te

ns
ity

 (a
rb

. u
ni

ts
)

ε||
ε⊥

Incident on 
HMM slab

In VacuumFi
el

d 
In

te
ns

ity
 (a

rb
. u

ni
ts

)
Fi

el
d 

In
te

ns
ity

 (a
rb

. u
ni

ts
)

FIG. 8. Dispersion of effective dielectric constants, ε
||
 

and ε
⊥
 for AlInAs/InGaAs (80 nm/130.5 nm) multilayer 

structure. Multilayer has HMM behaviour when ε
||
 > 0 

and ε
⊥
 < 0 (8.8 − 10.5 μm).

FIG. 9. Evanescent, high spatial frequency waves which 
decay in vacuum are captured by the HMM slab and 
allowed to propagate to the far field.

FIG. 10. Exact numerical simulation of the AlInAs/
InGaAs multilayer structure. The bulk response of 
the multilayer structure agrees very closely with that 
predicted by effective medium theory. The evanescent, 
high spatial frequencies waves propagate to the far 
field through the multilayer structure.
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vectorizes and transforms the spherical point source into 
electric fields corresponding to the orientation of the dipole 
vector    .

The double integral in equation 26 is very computationally 
heavy due to the limits of integration, and moreover, 
because there is a singularity when kz changes from 
real to imaginary (when the spatial frequencies become 
evanescent).

It  is numerically convenient to then convert this 2-D 
integral which ranges over (    ,    ) into a 1-D integral which 
runs over    through a cylindrical coordinate transform, 
and in addition, to split the integrals up into propagating 
and evanescent parts [12]. The forms of the decomposed 
integrals are then the well known numerical “Sommerfeld 
Integrals’’.

Because the form of the double integral in equation 26 
is that of a summation of plane waves                   with  
amplitudes        then it is possible to obtain the forms of 
the reflected and transmitted electric fields,  a n d   
using the fresnel reflection and transmission coefficients 
at a single spatial frequency pair (    ,    ). Similarly, the 
resulting integrals for      and      can then be converted to 
Sommerfeld integrals.

Using the tools derived above, the fields of a 
monochromatic radiating dipole (λ = 9.8 μm) were then 
simulated in MATLAB for two cases.

First, when the dipole was isolated in vacuum, and 
second when the dipole was brought near the effective 
medium HMM of the InGaAs/AlInAs multilayer.

The results of these simulations are shown in figure 11.
In vacuum the high spatial frequency modes required for 

imaging the very small features of the source decay quickly 
and the over all emission is essentially non-directional. As 
the source is brought close to the HMM, the high spatial 
frequency modes couple into the HMM resulting in highly 
directional emission. This very important result shows that 
very high resolution information may be carried to the far-
field. The implications of this extremely exotic behaviour 
are discussed in the section below.

Device Implications and Design
The planar HMM designed in this project has a wide 

range of applications from a bio-analytical tools  to 
integrated circuit quality control.

Each chemical species emits a unique IR fingerprint due 
to characteristics of the vibrations in the chemical bonds.
This allows for spectroscopy to identify specific chemical 

species, based on the observed IR spectrum.Combining 
spectroscopy with microscopy allows for drug permeation 
in human tissue to be observed (fig 12).

By using HMM sub-wavelength imaging techniques, it 
may be possible to observe drug permeation and chemical 
activity within a single cell.  The characteristic size of cells 
is much smaller than that of tissue, so to resolve these 
sub-wavelength (IR) features, sub-wavelength imaging 
techniques are required. This type of application has 
incredible importance especially in the pharmaceutical 
industry, and in the Bio-MEMs industry.

Si is transparent to IR wavelengths; therefore, cracks 
or defects in ICs or MEMs can be detected through the 
scattering and diffraction of IR light at these defect centres 
[14]. The main problem with the conventional technique is 
the diffraction limit: cracks and defects smaller than the 
illuminating wavelength can not be imaged. In terms of IR 
this corresponds to ∼ 2 − 3 μm. By using a HMM, sub-
wavelength resolution may be obtained so that defects 
with sub-wavelength dimensions may be observed and 
detected. This type of application/ device is conceptualized 
in figure 13.

Conclusion
I have motivated further research in hyperbolic 

metamaterials as a means to beating the diffraction limit 
and presented a proof of concept of a semiconductor based 
device capable of sub-diffraction and sub-wavelength 
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FIG. 11. Intensity of EM radiation from a point-dipole. (a) In vacuum, high spatial 
frequency modes decay and emission is non-directional. (b) When dipole is 
brought near HMM, the high spatial frequency, evanescent modes couple into 
HMM resulting in highly directional emission. High spatial frequencies reach far 
field.
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FIG. 12. Shown: utilizing spectroscopy and microscopy allows for drug perme-
ation within tissue to be observed. Figure from [13]. By employing sub-wave-
length imaging techniques with HMMs in combination with spectroscopy, drug 
permeation within individual cells (cell dimensions are much smaller than that of 
tissue) may be obtained (nano-spectroscopy).
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FIG. 13. Illumination of a Si wafer from below by λ = 9.8 μm light. The incident 
light scatters through cracks in the wafer. (a) A sub-wavelength dimension crack 
in a Si wafer can be detected by a near field scanning optical microscope (NSOM) 
only if the detector is brought very close to the crack (< λ/6) (b) If a AlInAs/In-
GaAs HMM is placed above the wafer, then the NSOM can detect the crack up to 
2−3×λ from the wafer. A 10× increase in far field enhancement of high spatial 
frequencies can be acheived.
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imaging.
The necessary theory and electrodynamic formalism for 

describing the diffraction limit and sub-wavelength imaging 
was presented. Classical electrodynamics and the concept 
of Fourier optics was used to explain the conventional 
diffraction limit. Hyperbolic metamaterials, which have a 
hyperbolic dispersion and allow high spatial frequencies to 
propagate, were proposed as a solution to overcoming the 
diffraction limit.

Effective medium theory was developed for periodic 
multilayer structures and put forth as a design tool for 
hyperbolic metamaterials. It was shown that a multilayer 
stack of alternating layers of metal/dielectric displays 
hyperbolic metamaterial behaviour with a bulk extreme 
anisotropy: it behaves like a dielectric in one direction and 
a metal in another.

A hyperbolic metamaterial was then designed and 
demonstrated in the IR. Using a multilayer structure of AlInAs/
InGaAs (thickness 80/130.5 nm), with AlInAs as a dielectric 
and InGaAs as a customizable metal, it was shown that this 
multilayer structure exhibits bulk hyperbolic metamaterial 
behaviour in the IR region of wavlengths λ = 8.8 to 10.5 
μm. Furthermore, the novel and exotic behaviour of the 
hyperbolic metamaterials was demonstrated: hyperbolic 
metamaterials capture evanescent near field waves and 
allow them to propagate to the far field.  This was simulated 
for the effective medium slab of hyperbolic metamaterial 
and on the exact AlInAs/InGaAs multilayer structure using 
a transfer matrix technique. It was demonstrated that the 
bulk response of the exact multilayer model agrees very 
closely with that of the effective medium theory, therefore 
confirming the validity of the effective medium theory 
design technique for planar hyperbolic metamaterials.

The most difficult and also most important portion of 
the design was then completed. Namely, sub-wavelength 
imaging capabilities were demonstrated by showing a 
highly directional emission into the far field from a radiating 
point source near the effective medium AlInAs/InGaAs 
structure. The intricate and subtle details of the electric 
fields emitted by the point source was modeled through 
the Green’s function formalism of EM sources. Potential 
devices and applications in pharmaceuticals and IC quality 
control were then proposed for this planar AlInAs/InGaAs 
hyperbolic metamaterial. 

Future work will involve completing the last confirmation 
of the design: demonstrate sub-wavelength imaging 
capabilities by simulating the behaviour of a radiating point 
source above the exact multilayer structure. Moreover, 
experimental evidence must be obtained by fabricating 
and characterizing the AlInAs/InGaAs multilayer using 
molecular beam epitaxy.
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