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Abstract 

 
The focus herein is on macro-level relationships in mathematical demography 
and regression analysis. Notions of vector space calculus are used in discussing 
the impact of nuptiality and fertility on the net reproduction rate and log-ratio 
techniques in the analysis of regression relationships involving compositions. 
The latter is illustrated using occupational data from the U. S. population 

census. The methods described herein permit using all the available information 

while the commonly used method, which replaces a vector by a summary 

measure, lets much of the flavor in the data slip away. 
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Résumé 

 
Cet article a pour sujet principal les relations de niveau macro dans la 
démographie mathématique et l'analyse de régression. Des principes de calcul 
d'espace vectoriel ont été appliqués pour examiner l'impact des nuptialités et 
fécondité sur le taux de reproduction nette; nous avons aussi employé des 
techniques de "log-ratio" dans l'analyse de régression des relations qui 
comportent des compositions. Ces dernières sont illustrées à l'aide de données 
sur les professions provenant du recensement démographique des Etats-Unis. Les 
méthodes décrites dans cet article permettent d'utiliser la somme des 
informations tandis que la méthode la plus souvent employée, qui remplace le 
vecteur par une statistique sommaire, laisse passer beaucoup de détails. 

 

Mots-clés: Calcul d'espace vectoriel, taux de reproduction nette, nuptialité, 

fécondité 
 
 
 
 
 
 
 
 
 
 

Introduction 

 
Demographers are often interested in relationships among demographic variables 
at the macro level. An example is the relationship between the maternity 
function and the intrinsic rate of natural increase.  Such problems involving the 
implications of a change in a mathematical function defined over a subset of the 
real number field can be approached from the perspective of what is known as 
functional analysis.    

 
The net reproduction rate is examined as it relates to nuptiality and fertility.  
Then the analogous empirical setting in which a vector is a predictor or the 
‘response’ in regression analysis is considered.  An illustration in which the 
‘response’ is the income composition of the labor force and the predictors are the 
corresponding educational and age compositions is provided.  For this 
illustration U.S. data on occupational characteristics is used (U. S. Bureau of the 
Census 1963).  
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Preliminaries 

 
A linear vector space is a set of mathematical entities which can be added 
together and multiplied by real (or complex) numbers, giving in each case an 
element of the set.  These operations in linear vector space obey laws similar to 
the distributive, commutative, and associative laws that apply to the arithmetic 
of ordinary numbers.  Examples of linear vector spaces include the set of n-tuples 
of real numbers and the set of all continuous real-valued functions on the interval 
[a, b].   
 
Associated with a linear vector space is a scalar field, which may be the field of 
real numbers or of complex numbers. Any operator or rule that produces an 
element of a scalar field, given an element of a linear vector space, is called a 
functional.  A simple example of a functional in demography is the integral 
operator in 

 
            a

b
 m(x) dx                                                                        (1)    

                  
 
where m(x)dx is the probability that a woman of age x will give birth to a 
daughter before reaching age x + dx, mortality being ignored. Note that this 
operator produces a real number, given the maternity function. 
 
Generalizing the familiar concept of ‘length,’ or ‘distance,’ one defines a norm, 
a non-negative function, over a linear vector space.  A norm must have the 
following properties: If V is a linear vector space and u and v are any two 
elements in it, then the norm of u is zero if and only if u is zero; the norm of the 

sum of u and v is  the sum of the norms of u and v; and the norm of u is  
times the norm of u, where  is a real positive number. The norm of u is often 
represented by the symbol  | |u | | . .  An example of a norm is the Euclidean 
length function.  If X is a linear vector space of n-tuples, (x1, x2 , ..., xn), then | |x | |  

=  (x1
2
 + ... + xn 

2
) is a possible norm over X. 

 
The derivative or variation of a functional can be defined in a number of ways, of 
which I mention just one.  For others see, for example, Troutman (1996). A 
continuous operator or function L: N  M is said to be the Freschet derivative 

of f: N  M at the point x  N if  

 
 

           f(x + h) - f(x) = Lh + o(h) as h  0                                     (2) 
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Here  L for f (x), if f(x) is differentiable.   For a real-to-real function f : R  R, 

the ordinary derivative at x, as defined in elementary calculus, is a number 
giving the slope of the graph of f at x.  The Freschet derivative L at x, however, 

is not a number; it is a linear operator R  R.  If f is a differentiable function, 

then f(x + h) -f(x) = h f (x) + o(h).  Comparing this with (2), one may view L 

as the operator which multiplies each h  R by the number f (x) (interpreted as 

in elementary calculus),   or  it  may be the result of applying the linear operator  

f (x)  (interpreted as in the definition given above)  to the element h of the  

space R. 
 

To give an example (see Griffel, 1981, pp. 311-312), consider a functional J: C 

[0, 1]  R, defined as  

 
 
           J(u)  =  0

1
g(x)[au(x) + b{u(x)}

2 
]dx,                                      (3) 

 
 
where a and b are constants and g(x) a given function.  
 

           J(u + h) - J(u)  = 0
1
g(x)[au(x) + ah(x) + b{u(x) + h(x)}

2 
           (4) 

                                  -au(x) -b{u(x)}
2
]dx  

        = 0
1
g(x)[ah(x) + 2bh(x)u(x) + b{h(x)}

2
]dx  

        = 0
1
g(x)[a + 2bu(x)]h(x)dx + 0

1
g(x)b{h(x)}

2
]dx                                      

 
 

The last term here is o(h); hence J (u) is the linear functional defined by   

 
 

            J (u)h  = 0
1
g(x)[a + 2bu(x)]h(x)dx.                                       (5) 

 
 

J (u)h denotes the number into which the functional J (u) maps the function h.  

 
 

Net Reproduction Rate as it Relates  

to Nuptiality and Fertility 
 
Let m(a) be the fertility function by age, p(a) the corresponding survival 

probability function, and n(t) the force of nuptiality so that exp (- 0
a 
n(t) dt) is the 

probability of remaining single until age a, all of these referring to females. Let 
mw(a) and mo(a) be the fertility functions within and outside marriage, 
respectively. Then assuming no mortality differential according to marital status, 
the net reproduction rate is given by  
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           J(n) =  R0  = 0  p(a)[1 - exp (- 0
a 
n(t) dt)]mw(a) da                   (6) 

                     +  0  p(a)exp (- 0
a 
n(t) dt)mo(a) da    

 
Considering p(a) as a given function,  
 
 

           J(n + h) -J(n) = 0  p(a)[1 - exp (- 0
a 
{n(t) + h(t)}dt)]mw(a) da  

 + 0  p(a)exp [- 0
a 
{n(t) +  h(t) dt]mo(a) da        

 - 0  p(a)[1 - exp (- 0
a 
n(t) dt)]mw(a) da  

 - 0  p(a)exp (- 0
a 
n(t) dt)mo(a) da        

  = 0  p(a)exp (- 0
a 
{n(t)dt) 0

a
 h(t)dt [mw(a) -mo(a)] da + o(h) 

 
 

Hence J (n) is the linear functional defined by  

 
 

         J (n)h = 0  p(a)exp (- 0
a 
{n(t)dt) 0

a
 h(t)dt [mw(a) -mo(a)] da 

 
 
that states that if, at each age, fertility within marriage is higher than that outside 

marriage, then the sign of J (n)h  depends upon the sign of 0
a 

h(t) dt.  

Obviously, 0
a 

h(t) dt  0, if h(t)  0 throughout 0  t a, i.e., for all ages. 

Thus, as a particular case of the setup described above, if the probability of 
remaining single till age a is reduced, for all a, then the net reproduction rate 
will increase. The same applies if the probability of remaining single is reduced 
in one age interval, with no change in this respect at other ages.  (See Ruzicka 
(1974) for another way of arriving at this particular result.)  Note that the result 
obtained above is quite general, although in interpreting it emphasis was given 

to simple scenarios such as h(t)  0 for all t.  Also note that in deriving the 

results, no restriction was put on the form of the functions involved.  When 

focusing on J (n)h , however, one will be concerned with functions such as n(t) 

restricted to the forms observed in human populations.  
 

It is worth emphasizing that just as in elementary calculus we think of f (x0) as 

the derivative of a function f(x) evaluated at the point x = x0 in vector space 
calculus of the kind illustrated above, we think of the behavior of an element of 
the space at a particular point in the space, but the ‘points’ are not real numbers; 
they are real-valued functions, n-tuples, or the like.  
       
In the context of regression analysis an issue is how a composition variable 
(e.g., an age pattern of something) affects a response variable.  But such issues 
are discussed in connection with the usual regression analysis after representing 
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the composition variables by some summary measures.  There are, however, 
ways to treat the composition variables more fully as discussed in the next 
section. 
 
 

Composition Variables in Regression Analysis 
 

In the context of regression analysis, when a composition variable is considered 
as a predictor or response, the common strategy is to represent the composition 
variable by a summary measure such as the mean or median.  Thus Parcel and 
Muller (1989) regressed average earning on mean year of schooling, mean year of 
work experience, and so on, using occupational groups as the units of analysis. 
Such approaches sacrifice a great deal of available information and more 
importantly fail to shed light on the details of how a predictor composition 
affects the response.  
        
A k-part composition (w1, w2, ..., wk) may be a relative frequency distribution 
(e.g., income composition, which could be treated as a multinomial) or an 
ingredient-makeup (e.g., a budget composition, which cannot be treated as a 
multinomial).  One can handle both types using the so-called log-ratios (see 
Aitchison 1986): ln (wi /wk), i = 1, ..., (k -1).  The literature on mixture-
experiments (see, e.g., Cornell 1981) may be worth mentioning in this 
connection since it shows how to treat an ingredient-makeup as a predictor. 
       
After estimating equations predicting yi defined as ln (wi /wk), i = 1, ..., (k -1), 
one obtains the ‘predicted’ distribution of (w1, w2, ..., wk), corresponding to any 
given configuration of the predictors, noting that  
 

w w y i ki k i= =exp( ), , ,..., ( )1 2 1 and w w wk1 2 1+ + + =... , giving  

 

w yi i

k

= +[ exp( )]1
1

1
1

 

Using the predicted response compositions for specified configurations of the 
predictors, it is possible to examine the impact of the predictors on the response.  
To illustrate, consider a simple set up in which there are two predictors, U and 
V, both scalars (not distributions). Suppose we obtain the predicted 
distributions corresponding to say (minimum of U, median of V) and (maximum 
of U, median of V).  Then comparing the two predicted distributions, one can 
assess how the response distribution shifts when U changes from its minimum 
to its maximum, while V remains ‘fixed’ at its median value.  This strategy can 
be expanded to involve compositions as predictors.  See Namboodiri, Corwin, 
and Dorsten (1993) for an application example.  
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An Illustration 

 

For an illustration consider the relationship of the educational composition and 
age distribution to the income composition of the occupation-specific U.S. male 
labor force (U. S. Bureau of the Census 1963).  The available data are all 
categorical (see Table 1).  The results presented in Table 2 are from an analysis 
using the following log-ratios for 237 occupational classes (excluding some 
classes with small n’s): 
 
 

yi = ln (number of individuals in the i
th
 income category ÷ number of 

individuals in the highest, i.e., 11
th

, income category),  i = 1, 
2, ..., 10. 

 

Ei = ln (number of individuals in the i
th
 education category ÷ number of 

individuals in the highest, i.e., 8
th

, education category), i = 1, 
2, ..., 7. 

 

Ai = ln (number of individuals in the i
th
 age category ÷ number of 

individuals in the highest, i.e., 15
th

, age category), i = 1, 2, ..., 14. 
 

 
Notice that the relationship of the Ei ’s and the Ai ’s to any single yi is 
analogous to a mapping from a vector space to a real number field.  For 
interpreting the results one estimates the predicted composition vector from the 
predicted yi’s, corresponding to different configurations of the predictor vectors.  
See Namboodiri, et al. (1993) for a demonstration of how this is done. 
 
 

Concluding Remarks 
 

In this paper the emphasis has been that many demographic phenomena can be 
viewed as problems of mapping from a vector space to a real number field.  In 
the regression context, this type of a setup arises when one is interested in 
composition variables as predictors or response.  When examining such 
relationships, it is a common strategy to represent a vector by means of a 
summary measure.  This strategy is not always advisable.  In many cases, the 
summary measure used may not capture the full flavor of the vector (e.g., a 
probability distribution). By using the approach outlined herein it is possible to 
examine the relationships of interest in a more general fashion.  



Variable

Education (1) = <5  

(in years of schooling completed) (2) = Grades 5 - 7  

(3) = Grade 8

(4) = High School 1 - 3 yrs.  

(5) = High School 4 yrs.

(6) = College 1-3 yrs.

(7) = College 4 yrs.

(8) = College 5+ yrs.

Age  (1) = 14 - 15 

(in years) (2) = 16 - 17 

(3) = 18 - 19 

(4) = 20 - 24     

(5) = 25 - 29 

(6) = 30 - 34

(7) = 35 - 39    

(8) = 40 - 44

(9) = 45 - 49    

(10) = 50 - 54  

(11) = 55 - 59 

(12) = 60 - 64

(13) = 65 - 69 

(14) = 70 - 74

(15) = 75 +

Income (1) = Under 1,000

(in US Dollars) (2) = 1,000-1,999

(3) = 2,000-2,999

(4) = 3,000-3,999

(5) = 4,000-4,999

(6) = 5,000-5,999

(7) = 6,000-6,999

(8) = 7,000-7,999

(9) = 8,000-8,999

10) = 9,000 - 14,999

(11) = 15,000 +

             the ith category/the frequency in the last category).

Categories and Codes

Table 1

Specification of Variables

Note:  For each variable, the log ratio in the regression analysis = In (the frequency in 
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