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Résumé—Il s’agit dans I'analyse suivante d’une présentation de la méthode entropie maximum
(MEM) et son application sur les modéles autorégressifs, “série-temps™ convenables. Trois
simulations repliées Monte Carlo d’une population humaine close soumises a une variation
stochastique en natalité et mortalité, produisent des spectres de puissance similaires en dépit des
grandes différences dans les trajectoires des nombres totaux en I'espace des 600 ans d’histoire
simulée. Les traits saillants de ressemblance sont attribuables a une “longueur de génération”
femelle d’un peu plus de 30 ans et un composant périodique de fécondité plus court amplifié par
des oscillations dans un systéme ol le méle domine et oit 'dge nuptial est limité. On a utilisé un
critére non-subjectif pour le choix d’un ordre acceptable du modéle AR. On a démontré les
avantages de la méthode Burg (MEM) sur les techniques spectrales conventionnelles concernant
les courts registres des données avec des intervalles d’échantillonage également espacés.

Abstract—The maximum entropy method (MEM) of spectral analysis and its application to fitting
autoregressive (AR) time-series models are presented. Three replicate Monte Carlo simulations
of a closed human population subject to stochastic variation in births and deaths yield similar
power spectra in spite of large differences in the trajectories of total numbers within the first 600
years of simulated history. Major features of similarity of the power spectra may be referable to
a female “generation length” of approximately 30 years and a shorter periodic component of
fertility amplified by oscillations in a male-dominant, age-restricted marriage system. A
nonsubjective criterion for the choice of sufficient order of an AR model is utilized. The
advantages of the Burg method (MEM) over conventional spectral techniques for short data
records with equally spaced sampling intervals are demonstrated.

Key words—spectral analysis, Monte Carlo simulation, maximum entropy method, closed
population

1. Introduction

In spite of recent interest in the application of spectral techniques to the analysis of
biological data, for example, Housworth (1972) and Fuller and Tsokos (1971), this approach
has not been widely used to examine periodic phenomena which are evident in many biological
processes. A major obstacle to the application of conventional methods of spectral analysis to
biological time series is the difficulty in obtaining a sufficiently large number of measurements
for an adequate representation of the series. Such difficulties may arise, for example, because
the sampling interval is fixed by circumstance rather than choice, or because the series is
stationary for only a limited time, or both.

Statistical considerations notwithstanding, the data requirements of conventional
methods are due largely to a dependence on fixed window functions. Since these functions are
independent of the true spectrum, they require a relatively large ratio of record length to lag in
order to reduce the fortuitous appearance of spurious peaks or instabilities (bias) in the
spectrum which may arise, for example, from leakage through a side lobe in the transfer
function of the smoothing window as lag is increéased. Jenkins and Watts (1968) have
demonstrated empirically that for practical purposes none of the three most commonly used
window functions can be considered perferable in this regard. For short data records, the
nonadaptive properties of the fixed window function place a restriction on the size of lag such
that resolution of peaks in the spectrum may not be possible because of severe smoothing of
the spectrum which results from using a small lag window. This is particularly limiting in the
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case of biological applications where for most purposes it is the frequency of spectral power
that is of primary interest, relative power and slope often being difficult or impossible to
interpret.

Burg (for example, see Andersen, 1974, Kanasewich, 1973, and Lacoss, 1971) first
proposed a data adaptive method of spectral analysis, called the maximum entropy method
(MEM), which largely ameliorates the difficulties associated with windowing. This is

-accomplished by dispensing with the window function altogether and using Wiener optimum
filter theory to design a least-squares prediction filter which transforms the input series to
white noise. This is equivalent to finding an m length filter which would most reduce the
entropy of the spectrum. Furthermore, this filter can generate a process from white noise which
would have the same first m autocorrelations as the data. Therefore, it is possible to obtain the
power spectrum of the input series from the response of the prediction filter and the power of
the noise series. Thus, MEM is a method of maximizing the information which may be
obtained from the data without the assumption of continuation which is inherent in most other
spectral techniques. ‘

Another important feature of the MEM is that the coefficients of the prediction filter are
efficient estimates of the parameters of the autoregressive model associated with the time
series. The autoregressive (AR) model can in turn be used to obtain a forecast of the process
under study.

Although certain properties of the MEM are as yet incompletely understood, Lacoss
(1971) has examined the MEM in some detail using known autocorrelation functions and
concluded that it offers consistently superior resolution to conventional methods of spectral
analysis, particularly for short data records. In addition, it is not unusually sensitive to
statistical fluctuations in the estimated autocorrelation function.

In this paper we illustrate the use of the MEM in the analysis of three nonstationary time
series obtained by Monte Carlo simulation of the growth of a human population. We compare
the estimates of the smoothed spectral density using a Tukey spectral window to those of the
MEM power spectrum,

1I. Methodology
2.1 A requirement for stationarity

The MEM has, in common with most other spectral techniques, an absolute requirement
for stationarity of the input series. A discrete-time stochastic process is said to be strictly
stationary if a joint distribution of any set of observations is unaffected by shifting all times of
observation ahead or backward by any integer amount. In practice, this definition is somewhat
awkward so that several ad hoc procedures have been employed such as examining the
sigrificance of slope by least-squares linear regression (Chatfield and Pepper, 1971) or testing
independence with a Kendall rank-order statistic (Fuller and Tsokos, 1971). Visual
examination of both the series and its sample autocorrelation function (acf) is universally
recommended since a stationary series has no trénd and its sample acf damps quickly to zero.
In our experience, the detection of trend and subsequent transformation to stationarity are not
serious problems. Trend is, in practice, indistinguishable from an unresolved oscillation of very
long period. Generally this will be indicated by considerable power at the low frequency end of
the spectrum at the expense of resolution elsewhere in the frequency domain. Such low
frequency power may then be removed simply by some combination of sum and difference
filters or by a multiplicative filter for a series with an exponential trend (see Jenkins and Watts,
1968).

2.2 Estimation of the spectrum
In the simplest representation of the MEM, a linear prediction operator Arn, of length m, is
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defined on the input series x. with zero mean such that for a prediction distance unity a best
estimate of the series at ¢ + 1 is obtained as

= 3 Xer A, (=1,...,N) 2.2.1)

=]

An error series is then obtained as:

Z0= X~ X 2.2.2)
which is seen to represent the nonpredictable part of x.. The prediction operator An is given by
the m length series Am = @mi, . . . , @am and may be obtained from the set of relations:

o o)} . . . Gm-1] fl &go
= . (2.2.3)
&1
'¢m—l . . . bo fm gm-1

where for lag 7, ¢, is the autocorrelation of the input series, g, is the crosscorrelation
between the desired output and the input signals, and f; is the least-squares inverse filtét or
Wiener filter which minimizes the sum of squares of the error series. The Wiener filter
minimizes the energy existing in the difference between the desired output and the actual
output (Peacock and Treitel, 1969). The sample autocovariance function of the input series
for lag 7 is estimated as:

cr = (I/N) y % Xt Xewr (2.2.4)

and the crosscovariance between the desired output and input traces for a prediction
distance of one as:

Cre] = (I/N) N Et: Xt X741 (22.5)
Thus the system of equations (2.2.3) may be rewritten as:
Co C1 . . . Cm—, am1 C1
= . (2.2.6)
(4]
Cm-1 . . . Co Amm Cl+m-1

The solution of this system of normal equations yields the prediction operator An. A
prediction error operator with a prediction distance of one is defined as:

A’m = 1, Aml, » . « 5 Amm (22.7)

The output power of this filter is estimated as:
Pa= 5 ¢ A (2.2.8)

=0

The power spectrum may then be obtained over the Nyquist interval —1/(2QAN<f<1/(2A%)
as:

P(f) — PmAt /11 — g @mn e-ZﬂiantIZ ,.9)

n=]

where i* = 1. For purposes of digital estimation this equation is written in terms of the
trigonometric identities as follows:
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m
P(f) = Puls t/(l = 3 o cos 2l + (S amn sin 2mfnAr)? (2.2.10)
n=1 n=1

Alternatively, it can be shown that if the filter coefficients am, . . ., @nm and the output
power Pn were known independently of the autocorrelation function, we could obtain an
improved estimate of the sample autocorrelation function (acf) by solving the set of normal
equations:

¢0 ¢l . . . ¢m 1 P, m
—Am1 0
= (2.2.11)
¢
®n . . . o ~Amm 0

Burg first outlinied the procedure for obtaining the filter coefficients and the output power
independently of the acf and Andersen (1974) has more recently presented the following simple
algorithm for digital computation.

For the general case, the average forward and reverse power of the m length prediction
error operator is given by:

L Y- & ame )  (tom = & amexen)] (22.12)
- mk * Xt+k, +m mk * Xt+m- ol
N 1 ot t t 2 k * Xitmek

which can be minimized with respect to amm to give the correct solution of the highest order
filter coefficients as:

N-m N-m
Gmm =2 3 bubm | % (Bmt bm) (2.2.13)
=1 =1
where:
bt = b1t — Qe me1 " D't 0 2.2.19)
b'm = Dp1,t41 — G-t m-1 " By, 11 (2.2.15)
The remaining filter coefficients are then obtained as:
Ak = @1k ~ Gmm * A1, mek 2.2.16)
and P, is estimated by:
Po= Po1+(1 — d’um) 2.2.17)

Thus the power spectrum can be obtained directly without actually calculating the
sample acf by starting with the two-point filter (1, —41;) which is determined by the starting
values byt =x, b'n=xw1 and Py = (I/N)-Zt)xt2 and building up the m + 1 point filter
recursively. It is convenient to normalize the zero-mean input series as follows:

x\/N/ VE %’ (2.2.18)

This transformation gives a power scale which is comparable to that obtained by conventional
methods. If the series is not normalized, solution of equation (2.2.11) provides an estimate of
the sample autocovariance rather than the sample autocorrelation function.

Criteria for choosing an optimal prediction filter length have not been explicitly defined.
Peacock and Treitel (1969) suggested, on the basis of empirical results, that the filter length
should span two or more orders of any multiple pattern in the autocorrelation function.
However, in some applications multiple patterns may not be sufficiently evident. Andersen
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(1974) has noted that the choice of filter length will depend on the kind of information one
wants to obtain; for example, identification of major frequency components, the signal-to-
noise ratio, etc. An objective procedure might be defined as follows: If the true order (m) of the
AR or ARMA (autoregressive and moving average) process generating the series were known,
then the m length prediction filter would be a sufficient description of the process. Since the
MEM spectrum is simply the inverse of the squared response of the filter, then it is reasonable
to assume that the MEM spectrum obtained from the m length prediction filter is an adequate
representation of the true spectrum. A recently developed criterion for determining the order
of an AR or ARMA process is utilized in a later section of this paper.

2.3 Interpretation of the spectrum

In contrast to conventional techniques which estimate relative power by peak values, the
power in the MEM spectrum is proportional to the area under the peak and approximately
proportional to the square of the peak values. In view of the efficiency of numerical integration
techniques, this property of the MEM, although inconvenient, should not be a serious
drawback to widespread application. Moreover, Lacoss (1971) has concluded from empirical
studies that the MEM is often a good pointwise approximation to the true power, particularly
if the peaks are broad.

R. E. Kromer (cited in Lacoss, 1971) has shown that the estimate of power of the MEM
spectrum is asymptotically normally distributed with approximate degrees of freedom N/L
where L is filter length and & is record length, so that confidence intervals for the power may
be obtained as for conventional methods from a z-distribution. Because the MEM does not
have a window function proper, the concept of standardized bandwidth is not applicable to the
MEM spectrum. However, this must not be considered limiting since the resolution of the
MEM is such that the actual bandwidth of spectral peaks will generally be very narrow.

2.4 Autoregressive model building
For a stationary series with mean u the general autoregressive process (AR) is given by:
X p=om (X —w)+ ..o+ onm - (X)) + Z, 2.4.1)

where Z: is white noise and m is the order of the process. From equation (2.2.1) it is seen
that the coefficients of the AR model am, . . ., amm are estimated by the m length
prediction filter @m, . . ., amm and Z, is the error series (2.2.2). Since the prediction
filter is obtained so as to maximize the “whiteness” of Z., the filter coefficients are best
estimates for the AR model. ‘

The residual sum of squares of the AR model of order m may be expressed as:
St 5+ - . s Q) = (N-11) [ Cex(0) = &m1 Cix(1) = . - . ~&mmCux(m)] (2.4.2)
where Cxx (7) is the sample autocovariance for lag 7. The residual variance is then obtained
as:
s = S(fi, 8, - - . , Gmm) [ (N-2m—1) (24.3)
Recently Akaike (1974) and Parzen (1974) have formulated criteria for determining the
order of the ARMA model which best approximates the stationary process. The simplest and

to date most widely used of these is Akaike’s final prediction error (FPE) criterion. The FPE
for an AR model of order m is defined as:

FPE(m) = [(N+m) | (N-m)"]- S(d, @, - - + » &mm) (2.4.9)
By scanning AR models successively from order m = 0 to some upper limit m = M, the model
of choice is given by that order m and the associated [&ms; 7=1, . . ., m] which
determine the minimum FPE(m) [m=20, 1,. . ., M]. Although in this procedure the
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choice of the correct model is straightforward, the determination of the upper limit M
requires judgment.

If the original series required filtering prior to estimation of the prediction operator, it is
necessary to backfilter the AR model in order to obtain a representation of the original series.
For example, the m + 2 order AR model is obtained from the m filter coefficients

@ml, . . ., &mm Obtained on the double-differenced series as:
X =n(l - é" amr) + ﬁ:n Xir(Cr=2Crs1 + Cr2) + Z, (2.4.5)
=] 7=l

where £ is the sample mean of the double-differenced series and the C. are obtained from the
filter coefficients as:
[C1=10,-1, ami, . - . , Gmm, 0, 0] (2.4.6)

After backfiltering, the AR model has increased in order from m to m+ 2 and may then be used
to predict the behaviour of the original process for some relatively short lead time / where / is
dependent on the order of the process (see Box and Jenkins, 1970).

1I1. Application to Simulated Time Series
3.1 Structure of the simulation

The maximum entropy method (MEM) is illustrated here with a subset of three runs (see
Figure 1) from a total of forty Monte Carlo microsimulations of a closed human population.
The simulation study comprises eight combinations of incest prohibition, clan exogamy, and
remarriage rules (Morgan, 1974). The computer programme simulates a stochastic age-and-sex
dependent, birth-and-death process with a male-dominant marriage market. Age-and-sex
specific mortality schedules and female marital fertility patterns were chosen to approximate
an intrinsic rate of increase of 0.5 per cent per cycle for a stable population. Each run began
with the same initial population of one hundred unmarried and unrelated individuals of each
sex. The initial population was age structured to approximate the equilibrium distribution
which would eventually be reached in the stable population. The programme provided
summary statistics every ten cycles and was terminated in most cases prior to 600 cycles if the
population decreased below a certain level or would have exceeded storage for a population of
about 1,000 individuals. A cycle is considered nominally equivalent to one year.

The effect of the starting conditions was to introduce an early pulse of births subsequent
to the initial pulse of some forty or so marriages. After an initial period of growth, many of the
populations experienced a temporary stationary phase. The result of the starting conditions is
to introduce one or more waves into the population numbers, which are expected to
reverberate with progressively damped amplitudes until the population eventually reaches age-
and-sex structure equilibrium. It should be noted that although spectral techniques are not
affected by a nonconstant amplitude in the signal, the analysis requires the assumption that
within the record length the period remains approximately constant.

In the three series chosen for illustration here (Figure 1), all matings are monogamous and
remarriage is not permitted upon the death of a spouse. The only input difference among the
three simulations is in the use of a unique seed number for the pseudo-random number
generator. The number of data points for the original series are 58, 61, and 56 for runs 1, 2, and
3, respectively. A point represents a census of the population at the beginning of each ten-year
interval.

3.2 Calculation of the spectrum

Since the three series were not stationary, we examined the effectiveness of various digital
filtering schemes in transforming the original series to stationarity. Kendall rank order
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correlation coefficients for the series of first differences were not significantly different from
zero at the 5 per cent level on a two-tailed test. (However, the first differences for run 2 do
exhibit a statistically significant trend on a one-tailed test: 7 = 0.164, z = 1.83.) White noise
tests of the series of first differences utilizing the sample integrated spectrum (Jenkins and
Watts, 1968) demonstrate periodic effects for all three runs. Furthermore, the MEM spectra of
the series of first differences show appreciable power at low frequencies (Figures 2, 3, 4).
Determination of the prediction filter length is given below.
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FIGURE 2. MEM POWER SPECTRUM ESTIMATES OF RUN 1 FOR SERIES OF FIRST
AND SECOND DIFFERENCES
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Since the presence of power at very low frequencies in the MEM spectrum could be the
result of lack of stationarity, and because we are interested primarily in spectral components of
higher frequency, a second-order difference filter was applied to the original series as follows:

i=X-2Xi; + Xi, 3.2.1)

We thereby preferentially sacrifice information at low frequencies in order to obtain better
resolution at higher frequencies.
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FIGURE 4. MEM POWER SPECTRUM ESTIMATES OF RUN 3 FOR SERIES OF FIRST
AND SECOND DIFFERENCES.

10



Maximum Entropy Spectral Analysis of Monte Carlo Simulations

The conventional spectral density estimates for the three double-differenced series were
computed using the Tukey window for an increasing series of lag lengths (Figures 5, 6, 7). By
following the window closing procedure suggested by Jenkins and Watts (1968), apparent
qualitative stability of the smoothed spectral density is obtained with lags of twelve or less, as
can be judged from Figures 5, 6, and 7.
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FIGURE 5. SMOOTH SPECTRAL DENSITY ESTIMATES FOR RUN 1 USING THE TUKEY
SPECTRAL WINDOW WITH LAGS 5§, 8, 12 AND 15
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FIGURE 6. SMOOTH SPECTRAL DENSITY ESTIMATES FOR RUN 2 USING THE TUKEY
SPECTRAL WINDOW WITH LAGS 5, 8, 12, AND 15
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FIGURE 7. SMOOTH SPECTRAL DENSITY ESTIMATES FOR RUN 3 USING THE TUKEY
SPECTRAL WINDOW WITH LAGS 5, 8, 12 AND 15
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For the calculation of the MEM spectrum, we first obtained an estimate of the correct
prediction filter length. The FPE(m) form=40,.. ., 15 were calculated on the series of first and
second differences. The m filter coefficients for each MEM -model were calculated by an
algorithm published by Andersen (1974). For the series of first differences (d = 1), local minima
of the FPE(m) were obtained at m = 3 forrun 1, m =5 for run 2, and m = 8 for run 3, where M
was restricted to 10 in the interest of parsimony. (For M = 15, the local minimum of the
FPE(m) ford =1 of run | was at m = 14.) For the series of second differences (d = 2), local
minima of the FPE(m) were obtained at m =2 for run 1, m =6 for run 2, and m = 10 for run 3,
where again M was 10. Values of the FPE(m) for various MEM models are provided in Table
1. Utilization of the minimum information theoretical (AIC) estimate (MAICE) leads to the
same conclusion as that of the minimum FPE criterion except for run 3, d = 2, where the
MAICE is for the model of order m = 13 (then m = 10). The definition of these measures and
their relationship are provided by Akaike (1974) (see also Parzen, 1974).

TABLE 1. VALUES OF THE FINAL PREDICTION ERROR (FPE) FOR MEM AR MODELS

Degree of Differencing

AR Model d=1 d=2

Run 1 (N=58)

m=0 137.23 285.02

m=2 l46.10 141.14*
=3 128,267 142.46

m=14 119.72% 144.62

Run 2 (N=61)

m=0 80.04 120.64
m=3 73.43 80.00
m=5 71.78* 83.01
m=6 72.90 79.50%*

Run 3 (N=56)

m=0 54.21 83.54
m=2 54.06 50.83
m=8 37.78% 54.50
m=10 39.94 46.23%
m=15 37.6l* 47.69

+ Minimum for 0 € m € 10

* Minimum for 0 € m £ 15
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The MEM power spectra calculated using the shorter prediction filter lengths are
illustrated in Figures 2, 3, and 4. By comparison of these figures with Figures 5, 6, and 7 it can
be seen that the MEM spectra obtained in this manner correctly resolve the major feature
evident in the Tukey spectra of the series of second differences.

Estimates of the frequencies of the peak power of the major spectral feature of each of the
runs can be obtained from the corresponding MEM power spectra as shown in Figures 2, 3,

12+
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FIGURE 8. MEM POWER SPECTRUM ESTIMATES OF RUN 1 FOR
SERIES OF FIRST DIFFERENCES
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and 4 forithe series of secoiid differences. These values are approximately 29, 34; and 29 years
for runs 1, 2, and 3, respectively. We interpret this primary short period as the average
generation time, since the input fertility schedule for married females has a mean of 29 years.
The initial “driver” of this oscillation is believed to be the “pulse” of births which occur at the
beginning of the simulation as noted previously. ;

We suggest that the secondary peak of shorter period, which is especially apparent for run
2 (Figures 3 and 6), represents a fertility cycle induced by fluctuation in the number of
marriages. This fluctuation may be the result of an oscillation in the sex ratio of births. The
marriage subsystem of the simulation may be behaving as a feedback amplifier (see Cole, 1972,
Chapter 6). The MEM spectrum of second differences of run 3 (Figure 4) provides superior
resolution of the secondary peak of short period compared to the Tukey spectrum (Figure 7).
The resolution of the MEM spectrum for run 1 can be increased by extending the prediction
error filter length to m = 14 for the series of first differences (Figure 8). In this case, the long
period (approximately 250 years) as well as short period oscillations are clearly resolved. For
all three runs the high frequency peak in the MEM spectra corresponds to a period of about 22
to 23 years.

Comparison of AR models for series with d = 1 and d = 2 shows that for all three runs a
smaller final prediction error is: obtained for the appropriate MEM model of series of first
differences than for second differences. These results suggest that the AR models of first
differences may be preferred to those of second differences for the purposes of forecasting.
However, it is not obvious that this procedure for AR model selection is valid in general for
nonstationary time series. Furthermore, difference filtering may not be the optimal procedure
for the purposes of removing trend from these data.
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