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Abstract 

Correlated data originate when observations are not selected independently 

because of sampling design, study design (especially panel studies), or spatial 

distribution of the population. In these situations, conventional methods for 

estimating the parameters of linear models are inappropriate, and the 

conventional methods for estimating the variances of these estimates may yield 

biased results. These two problems are different, but they are related. This paper 

provides an introduction to the problems caused by correlated data and to 

possible solutions to these problems. First, we present the two problems and try 

to specify the relations between the two as clearly as possible. Second, we 

provide a critical presentation of random effects, mixed effects and hierarchical 

models that would help researchers to see their relevance in other kinds of  

linear models, particularly the so-called measurement models. 

 



Methodological Issues – Benoît Laplante and Benoît-Paul Hébert 

 288

Résumé 

 

On obtient des données corrélées lorsque les observations ne sont pas 

sélectionnées de manière indépendante soit à cause du plan d’échantillonnage, 

soit à cause du plan d’enquête (surtout dans les études à passage répété), soit à 

cause de la répartition de la population dans l’espace. Dans de tels cas, les 

méthodes usuelles d’estimation des paramètres des modèles linéaires ne sont pas 

appropriées et les méthodes usuelles d’estimation des erreurs-types de ces 

estimés peuvent produire des résultats biaisés. Ces deux problèmes sont 

différents mais reliés. Nous proposons une introduction aux problèmes créés par 

les données corrélées et à leurs solutions. Nous présentons tout d’abord les deux 

types de problèmes en tentant d’éclaircir au mieux les relations entre les deux. 

Nous proposons ensuite une présentation critique des modèles à effets aléatoires, 

à coefficients aléatoires, mixtes et hiérarchiques qui devrait permettre aux 

chercheurs de mieux comprendre les liens qui les unissent à d’autres formes du 

modèle linéaire, en particulier les modèles de mesure. 

 

Key Words: Correlated data, cluster sampling, random effects models, 

                     measurement models 

 

 

 

 

 

 

 

 

Introduction 
 

Correlated data originate in situations where observations in a sample are not 

selected independently of each other. This may happen in various settings, most 

of which are not unfamiliar to demographers. 

 

The lack of independence may be a consequence of the sampling design. 

Selection of many individuals within a sampled unit, as in cluster sampling, is 

clearly a violation of the assumption of independence in the selection of 

observations and creates a situation where individuals selected from the same 

cluster are likely to be more alike than people selected from different clusters. 

 

The lack of independence may also be the consequence of the design of the 

study. Studies that involve multiple observations on the same individuals, as in 

repeated measures design or panel surveys, generate observations that are 

correlated. Observations made on the same individual over time are more likely 

to provide similar information than observations on different individuals. This 

situation is quite similar to that of time series in econometrics. 
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The lack of independence may also be the consequence of the spatial 

distribution of the population under study. Researchers interested in any 

phenomenon in which a process involves a population and its location in space 

are likely to deal with samples in which the similarity between individuals is 

related to the distance between their location in space. These situations may 

arise in ecology, geography, urban studies, as well as in geology and other earth 

sciences. 

 

In all these situations, conventional methods for estimating the parameters of 

linear models are inappropriate because they are all based on the assumption of 

independence between observations.  And, the conventional methods for 

estimating the variances of these estimates, on which confidence intervals are 

based, are biased. 

 

All these situations have a common fact. The selection of the primary sampling 

units (PSU) – that is, the clusters from which several individuals are selected on 

whom repeated measurements are made or the areas in which specimens are 

collected – is done at random within a population of clusters, individuals or 

areas. But, the collection of information from individuals is conditioned on their 

being the members of the PSU, and hence not random. This creates a situation 

where, if there are reasons to believe that there may be systematic differences 

between the PSU, the estimates of linear models will be affected by the 

sampling process. 

 

The two problems are different in their origin and formal treatment, but they are 

nevertheless conceptually related and, from the researcher’s perspective, they 

happen in the same setting and have to be dealt with at the same time. Over the 

last fifteen years or so, the increase in the power of computers has stimulated the 

development of software that can implement solutions to these problems. The 

possibility of handling these problems has led to complex survey designs on 

which studies, especially longitudinal studies, are based that collect correlated 

data. The availability of such data has stimulated the development of new 

statistical tools. Greene (1997) notes that in econometrics, panel data modelling 

has been one of the two most important areas of development since the 

beginning of the eighties. Social scientists are more and more likely to deal with 

the problems arising from correlated data. This is not only because there are 

more and more of such data but also because publication of studies based on 

such data in reputed journals is likely to become more and more demanding 

about the treatment of these data. It seems then that social scientists have no 

choice but to get themselves familiar with these problems and their solutions. 

 

This, however, is more easily said than done. Part of the problem is that, outside 

economics, social scientists have seldom been trained in the mathematics needed 

to understand the many aspects of the problems and of the solutions. Reading 

articles or textbooks and software manuals about these problems and solutions 
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requires, among other things, a working knowledge of probability theory, 

calculus and matrix algebra, as well as a good understanding of maximum 

likelihood estimation and some familiarity with Bayesian estimation. The latter 

is especially important if one wants to come to terms with hierarchical 

modelling, one of the approaches that propose solutions to the problems of 

correlated data and random selection of values of variables. Another part of the 

problem is that work on correlated data is being done in very different domains 

and from perspectives that are sometimes hard to reconcile. This makes getting a 

comprehensive view of the field quite problematic, which alone is sufficient to 

deter benevolent researchers from using the methodological tools they know 

they should use. 

 

In this article, first we will try to provide a clear outline of the two problems 

caused by correlated data and of the solutions to these problems. Separate 

treatments of these problems may be found elsewhere, but here, we will try to 

present them in an integrated fashion and make the relations between the two as 

clear as possible. Second, we will provide a critical presentation of random 

effects, mixed effects and hierarchical models that should help researchers to 

relate these with other kinds of special linear models, notably measurement 

models, and to clear the confusion that surrounds them at times. Towards this 

end, we shall review the basic principles of sampling (including stratification 

and clustering with special emphasis on intraclass correlation, design effects and 

on the use of weighting) and of robust variance estimator to obtain correct point 

estimates and standard errors. We will then look at the relations between 

prediction, measurement error and random effects, and their relevance in the 

context of correlated data.  We will then look at various types of linear models 

developed from the idea of random effects: random-effects models, random-

coefficients models, mixed models, and hierarchical models. Finally, we will 

look at a special case of correlated data modelling: panel data modelling. 

 

Papers dealing with methodological topics usually include examples. This one 

does not, for the following reason. Complex surveys have been around for a 

while and longitudinal surveys are becoming more common. The techniques 

needed to handle the problems of statistical inferences  arising from complex 

surveys have been known for a long time, although they are just starting to 

become widely available. The models needed to correctly analyse correlated 

data are more recent and are still being developed. However, most Canadian 

researchers cannot yet use these techniques and models on Canadian data. 

Statistics Canada, which manages most of the large-scale social and 

demographic surveys conducted in Canada, considers that including the 

information on PSU membership in its public use microdata files would create 

an intolerable risk of confidentiality breach. Access to this information is 

therefore restricted to deemed employees of Statistics Canada. This situation 

should change soon: Canadian researchers should be given access to confidential 

data through a network of university based regional data access centres that will 

become operational in 2001. Canadian researchers should therefore soon start to 
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be able to use the techniques and models described in this article. The authors 

became interested in these techniques and methods when they understood that 

they would have to use them and teach them in the near future. Until now, 

however, they have only been able to use them on foreign data. Examples using 

Canadian data are scarce, but real research using Canadian data should become 

common in the coming years. 

 

 

Issues Related to Sample Design 

Independent Observations: Simple Random Sampling 
and Stratification 

 
A sampling procedure in which each member of the population has the same 

probability of being selected into the sample produces a probabilistic sample. 

The simple random sample is the best known of probabilistic sample designs. 

However, many, if not most, of the sampling procedures used in social sciences 

do not use such a simple scheme. Phone surveys typically use a two-stage 

selection strategy in which households are selected through their phone numbers 

and then one member of the household is randomly selected. Assuming that 

each household has the same probability of being selected in the first stage, it is 

obvious that the probability of being selected into the sample is not the same for 

everyone: this probability decreases with the number of people sharing the same 

telephone number. The resulting sample will therefore include proportionally 

more people living alone than there are in the population, less people living in 

two-people household than there are in the population, even less people living in 

three-people household than there are in the population, and so on. This problem 

can be handled in different ways, but the simplest and the most common is by 

weighting the selected individuals according to the size of the household they 

belong to. Such a simple weighting procedure corrects the sample and gives it a 

structure that is, theoretically and usually, identical to that of the population 

from which it has been drawn. All point estimates and other statistics computed 

from such a sample are unbiased.  

 

Furthermore, it is possible to use non-proportional sampling designs to improve 

the precision of statistics computed from survey data. Whenever there are 

reasons to believe that the variance of a given variable is small within the 

categories of another variable, whereas the differences between the means of the 

first variable computed within the categories of the second are large, the 

standard error of the mean can be reduced by using non-proportional sampling. 

However, taking full advantage of this property requires the use of computation 

formulas that are not implemented in conventional software packages. 
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Non-independent Observations and Correlated Data: Cluster Sampling 

 

As we have just seen, it is possible, in certain circumstances, to improve the 

precision of estimates by using a given sample design. In many cases, however, 

sample designs that depart from the simple random sample may actually 

decrease the power of the sample and thus increase the standard errors of any 

estimates that can be computed from the data. Most sample designs that depart 

from the simple random design involve some form of clustering. Whereas strata 

are categories of the population to which the design allocates different sampling 

probabilities and thus creates a series of smaller simple random samples, a 

cluster sample is a sample in which individual cases are selected because they 

belong to the same sampled unit. If the clusters are households, the sampling 

probabilities of the spouses are related. Once the household is sampled, both 

spouses will belong to the sample, whereas none of them will be included in the 

sample if the household is not selected. In such as design, it is clear that 

individual cases are not selected independently from each other. Households 

may be selected independently from each other, but not spouses. In real life, 

things may get much more complicated. Many large-scale samples rely on some 

form of geographical clustering. Such designs typically call first for a sampling 

of geographical areas, then for a sampling of several smaller areas within the 

areas selected during the first stage, then for a sampling of several buildings 

within each smaller area, and then for a selection of several households within 

the buildings. In such cases, it is quite clear that all stages of the design but the 

first add some form of dependence between the sampling probabilities of the 

individuals. Such samples are not as good as simple random or stratified 

samples as far as statistical inference is concerned, because they lack the 

property on which all the statistical theory of inference relies: independence of 

the observations. There are several ways, however, to use them to make 

inferences, but there is no way to extract from them as much information as 

there would be in a simple random sample of the same size because they do not 

contain as much information in the first place. 

 

 

Variance Components and Intraclass Correlation 

 

Using cluster samples for statistical inference requires an understanding of the 

sources of  variance of the variables measured in such samples. In a simple 

random sample, all the variance stems from the differences between the sampled 

individuals, computed as deviations from the sample mean. In a cluster sample, 

the variance comes in part from the differences between the means of the 

sampled units, say households, and in part from the deviations of the individuals 

from the mean of the sampled unit to which they belong. The variance computed 

from the differences between the means of the sampled units is similar to the 

variance computed from the differences between the sampled individuals in a 

simple random sample. But, the variance computed from the deviations of the 

individuals from the mean of the sampled unit to which they belong is a 
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different thing. It contains no usable information for purposes of statistical 

inference because it does not come from random sampling; the individuals are 

selected because they are related to each other. Thus, in a cluster sample, the 

variance of any given variable has to be broken down into two components: the 

variance arising from the random sampling process and the variance that comes 

from the fact that individuals are selected because they are related to each other.  

 

The computation of these variance components is similar to the computations 

performed in one-way analysis of variance. The between-clusters variance is 

equivalent to the between-groups variance of anova, except that it is interpreted 

as the part of the total variance that comes from the random sampling process. 

The within-cluster variance is equivalent to the within-group variance of anova 

except that it is interpreted as the portion of the total variance that does not come 

from a random sampling process but rather from the homogeneity of the cluster, 

that is the similarity of individuals belonging to the same selected unit. 

 

As in analysis of variance, the estimation of the two variance-components 

begins by computing the ‘within’ and of the ‘between’ sums of squares. The 

within sum of squares is the sum of squares of all the deviations of the 

individual values on the dependent variable from the mean of this variable 

within the cluster to which they belong: 

 

  

                

  

SSW =  

i = 1

k
 

j = 1

n
  (yij –  y i.)2     (1) 

 

 

The between sum of squares is the sum of square of the deviations of the means 

of the dependent variable in each cluster from the overall mean: 

 

  

      

  

SSW = 

i=1

k
  (yi. –  y ..)2     (2) 

 

 

The estimate of the residual, or error, variance is simply the within sum of 

squares divided by its number of degrees of freedom, which equals the product 

of the number of clusters and the number of individuals by cluster minus one. In 

the case of unbalanced data, that is when the number of individuals varies from 

cluster to cluster, the estimator has to be modified, but the logic remains the 

same. The estimate of the residual error is also known as the mean square error: 
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One should recall that whereas it is possible to compute an estimate of the 

residual or error variance directly from the within sum of squares, it is not 

possible to compute directly an estimate of the model variance from the between 

sum of squares, or in this case, an estimate of the variance due to the random 

sampling process. The mean square computed from the between sum of squares 

is not an estimate of the model variance because it is the sum of the (estimate of 

the) model variance and of the (estimate of the) error variance. To get an 

estimate of the model variance, one must therefore subtract the error variance 

from the mean square computed from the between sum of squares. 
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Once the estimates of the model and error variances are computed, it is possible 

to estimate the proportion of the total variance that comes from the clustered 

sampling design. 
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The ratio of the between clusters variance to the total variance is the proportion 

of the total variance that comes from the differences between the clusters. It is 

therefore also the proportion of the variance that does not come from the 

differences between individuals who belong to the same cluster. This quantity, 

known as the intraclass correlation coefficient and usually denoted by  (rho), 

cannot be negative and varies between 0 and 1. A high value of  implies that 

most variance comes from the differences between the clusters and that the 

individuals belonging to the same cluster are very similar. A low value of  

implies that most of the variance comes from the differences between the 

individuals belonging to the same cluster. For this reason,  can be interpreted 

as the rate of homogeneity of the elements within clusters (Kish, 1965:170). 
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Robust  Estimates of Variances 

 

Unbiased point estimates of various statistics, from means to parameter 

estimates of linear models, can be computed from stratified or clustered data 

using conventional formulas as long as the individual observations are weighted 

in a way that makes the sample isomorphic to the population it was drawn from. 

However, for reasons that should be clear by now, conventional formulas for the 

computation of the variances (or standard errors) of statistics do not provide 

reliable results when they are used on stratified data or on clustered data.  

 

For several decades, a common practice among social science researchers who 

use data from complex surveys has been to normalize weights in such a way that 

they make their samples isomorphic to the population while retaining the actual 

size of the sample. It was believed that this rescaling provided a good 

approximation of the power of the sample. In fact, this form of rescaled 

weighting provides conservative estimates of the variances for stratified 

samples, but systematically underestimates the variances when used in clustered 

samples. In other words, even when using weights that make the sample 

isomorphic while retaining its original size, conventional formulas provide 

estimates that are likely to be too large when they are computed from stratified 

data and almost certainly far too small if they are computed from clustered data. 

Therefore, using these formulas with stratified samples is tolerable while not 

optimal, whereas using them with clustered samples is risky, if not a sure way to 

disaster. 

 

Complex sample designs that use both stratification and one or several levels of 

cluster selection make things even more complicated, even for the standard 

errors of statistics as simple as means and proportions. Things become quite 

intractable when one wants to compute standard errors for the estimates of the 

parameters of linear models. 

 

This problem is similar, up to a point, to the problem created by statistics whose 

sampling distribution is not known or impractical. To make statistical inferences 

using these statistics, one needs to find a way to gather some knowledge of the 

distribution of the statistic without being able to deduct this knowledge by 

purely analytical means. 

 

There are basically two strategies to circumvent this problem:  

 

• The first strategy is to put aside the formulas for the variances and 

standard errors of statistics, simply build an empirical distribution of 

estimates of these coefficients, then compute the variance and standard 

deviations of these empirical distributions and finally use these as 

estimates of the appropriate variances and standard errors.  
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• The second strategy is to find a more mathematical solution to the 

problem. 

 

There are three common methods that implement the first strategy; the balanced 

repeated replication, the jackknife repeated replication, and the bootstrap 

repeated replication. Although it can be adapted to estimate variances from 

clustered samples, the balanced repeated replication method (BRR) is basically 

designed to handle stratified samples and requires, at least in principle, that 

exactly two individuals be selected from each stratum. It is not commonly used 

to estimate the variances of the estimates of linear models. 

 

The jackknife and bootstrap methods are quite similar. Jackknife estimates of 

the variance of a statistic are computed by calculating the statistic with its usual 

estimator once in each of the pseudo samples that can be created from the 

original sample by deleting one different observation at a time. The data can 

thus be used to create up to as many different pseudo samples as there are 

observations in the original sample (the maximum number of possible pseudo 

samples is simply the number of possible combinations of n-1 observations that 

can be drawn without replacement in a population of size n, that is n!/(n-1)!(n-

(n-1))!, which reduces to n.) Once the statistic has been computed from the 

different pseudo samples, its empirical variance can be computed using a 

formula very similar to the common estimator of variance. One will recall that 

the estimator of the variance of a variable from a simple random sample is 
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whereas the estimator of the variance of the mean is simply 
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The jackknife estimator of the variance of the mean computed from n pseudo 

samples is 
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where the star symbolises statistics computed from the pseudo samples. 

 

The same logic can be used to estimate robust variances of any statistic, 

including coefficients of linear models and statistics for which there is no easy 

or simple way to implement an estimator of the variance, such as the median. 
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The general formula of the jackknife estimator of the variance of any statistic  

is 

 ˆ  2 =
n 1

n
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  (10) 

 

The bootstrap method is quite similar to the jackknife method. One has again to 

start with a sample of size n and an estimator. With the bootstrap method, one 

creates as many pseudo samples of size n as appropriate by drawing n cases with 

replacement from the original sample. The pseudo samples will contain 

duplicate cases. One then estimates the statistic   using the data from each of 

the pseudo samples and uses these values to compute the bootstrap variance 

using the bootstrap estimator of variance, which is nothing but the estimator of 

the variance from simple random data: 
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where k is the number of pseudo samples. The appropriate number of pseudo 

samples, or replications, varies according to the needs of the researcher and the 

kind of statistics for which a variance estimate is needed. Depending on these, 

the appropriate number of replications may vary from 50 to 200 if one wishes 

simply to estimate the standard error whereas as many as 1000 may be needed to 

estimate 95% confidence intervals. 

 

It should be stressed that whereas the jackknife and bootstrap estimators of the 

variance of a statistic are more accurate estimators of the variance of a statistic 

than the conventional estimators, the point estimates that could be computed 

using the jackknife or bootstrap replication methods are not better point 

estimates of the statistic itself than the estimate computed from the original 

sample. 

 

Although we did not stress it up to now, the presentation we just made of the 

jackknife and bootstrap estimators assumes simple random sampling. It is 

therefore well suited for the computation of the variance of a statistic whose 

sampling distribution is not known, but which was computed using data from a 

simple random sample. However, what we need are variances of statistics 

computed from samples not created using simple random selection. Fortunately, 

the solution to the problem is quite simple: to compute correct estimates of the 

variance of statistics using data from complex samples, one simply has to make 

sure that the pseudo samples used by the replication algorithms in their 

computations are samples of PSU and not samples of individuals. The 
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computation of the correct variances of the statistics then becomes 

straightforward.  

 

Whereas the balanced repeated replication, the jackknife and bootstrap methods 

all use pseudo samples to compute estimates of the variances of statistics, it is 

possible, at least in certain circumstances, to compute robust estimates of the 

variance of statistics using a more mathematical approach to the problem (the 

second strategy). Practically, this approach relies on the use of an estimator of 

the variance that goes by many names among which the Taylor series method, 

the linearization method, the first-order Taylor series linearization method, and 

the Hubert/White/sandwich estimator method are the most common. The 

mathematical introduction to this estimator is a bit demanding (see Binder 

(1983), Cochran (1977), Fuller (1975), Godambe (1991), Kish and Frankel 

(1974), Särndal et al. (1992), Shao (1996), and Skinner (1989)). 

 

 

Issues Related to Model Design 
 

Prediction Error 

 

Equation 12 below presents a simple regression model. In such a model, the 

actual dispersion of the observed dependent variable Y is modelled as a 

deterministic and a stochastic process. The deterministic process models the 

expected value of Y conditional on the independent variable X.  The modelling 

of the expected mean accounts for some of the actual dispersion of Y. The 

remaining dispersion is assumed to be produced by a Gaussian stochastic 

process that is represented by  and is usually interpreted as prediction error. 

The  represents the dispersion of the observed dependent variable Y around its 

expected mean conditional on the values of the independent variable X. This is 

the most conventional form of regression model. 

 

 

   ++= XY    (12) 

 

 

Measurement Error 

 

At least in the social sciences, most users of linear models have never been 

taught that historically, regression and related models are derived from 

measurement theory and that the error or residual that appears in these models 

was originally thought of as measurement error. From such a perspective, 

Equation 12 does not represent, say, the influence of education (X) on income 

(Y). Rather, the expected value of Y is the best point estimate of the true value of 

something that would be repeatedly measured with an instrument whose 

outcomes are affected by random imprecision ( ) and a systematic bias ( ). 
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These two interpretations of the basic linear model have been around for a long 

time and are still usually kept apart. Educational studies and psychometrics, for 

instance, pay a great deal of attention to measurement theory whereas social 

sciences are basically interested in causal modelling. However, the two 

perspectives can be merged: one can devise models in which prediction error 

and measurement error coexist. Equation 13 is such a model. 

 

 

  Y = + (X + ) + or Y = + X + +          (13) 

 

Y is a dependent variable and X an independent variable,  is the conventional 

origin of the regression equation,  is the prediction error of Y conditional on X, 

but here, we do not assume that X was measured exactly but rather that it was 

measured with some imprecision. Practically speaking, we consider that the 

observed value of X is not its true value, but the sum of the true value and some 

disturbance. In psychometrics or measurement theory, the proportion of the 

variance of X that would come from the true X would be referred to as its 

reliability. In a survey, for instance, X could be any independent variable. If it 

were income, the measurement error could be the consequence of the reluctance 

of people to disclose their personal income, or their ignorance of the household 

income, or the imprecision generated by rounding or categorisation of the 

income into wide income categories. If it were sex, the imprecision would come 

most likely from coding errors or presumably rare events such as transsexual 

respondents, respondents playing games with the interviewer or interviewers 

intentionally tampering data. 

 

Of course, once one has assumed that some or all independent variables should 

be thought of as measured with error, there is no reason to assume that 

dependent variables are measured without errors. Thinking of a model such as 

Equation 14 becomes therefore unavoidable. 

 

 +++=+ )()( XY   (14) 

 

In this model, both the dependent and the independent variables are assumed to 

be measured with error. In equation 14 as in Equation 13,  still represents 

prediction error. 

 

The inclusion of measurement errors in regression models typically increases the 

size and significance of the estimated effects of the independent variables 

because all of the covariance between the dependent and independent variable is 

imputed to the ‘reliable’ portion of their variances. In other words, in any real 

situation, the estimate of  in Equation 14 should be different from the estimate 

of  in Equation 12. Models that include measurement errors as well as 

prediction errors have become common over the last twenty years mainly 

through the development of structural equation modelling, also known as 
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covariance structure analysis, through the work of Karl Gustav Jöreskog and 

Peter Bentler and the available software, LISREL and EQS respectively. 

However, the models commonly used in covariance structure analysis are 

different from Equation 14. Typical covariance structure analysis models make a 

conceptual distinction between the prediction and the measurement parts of the 

model and are usually of the form 

 

 
+=+=+= xy and,

  (15)  

 

 

In such a model,  is the prediction error of the dependent variable ,  whereas  

is the measurement error of the observed dependent variable and  is the 

measurement error of the observed independent variable. However, in this 

model, the regression (or structural) coefficient  multiplies only the ‘true’ latent 

independent variable  and not the measurement error  of its observed 

counterpart x. The regression coefficient from a model that takes measurement 

errors into account in this way is known as a disattenuated regression 

coefficient. 

 

 

Random-effects Models 

 

The distinction between measurement theory and causal modelling and their 

respective interpretation of the regression equation is not a new idea, but the 

combination of the two perspectives in the same models is a rather recent 

development. Another old statistical idea that has received new attention and 

generated new developments in recent years is the distinction between fixed 

effects and random effects. 

 

The categorical variables that are used as factors in an analysis of variance may 

be classified into two groups: those for which the entire population of categories 

is represented in the sample and those for which the sample contains only a 

sample of the possible categories. Sex is a variable that belongs to the first 

category. In a sample of the population, we will find men and women, and only 

men and women. The variable has only two categories, and both are present in 

the sample. 

 

Studies where the effect of the experimenter or the interviewer is taken into 

account provide a classical example of the second type of variables. Although 

the idea may seem confusing at first, experimenters and interviewers are persons 

who could have been replaced by other experimenters or other interviewers. 

Thus, they are sampled and can be seen as a random sample drawn from a 

population of experimenters or interviewers. Suppose that interviewers make up 

an independent variable in an analysis of sample data. Then, we create a strange 

situation. We have a sample of interviewees drawn from the population under 

study and a sample of the categories of this particular independent variable 
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(interviewers), whose categories we happen to have sampled from the 

population of all the people who could have been hired to conduct the 

interviews. Using that kind of variable raises a new question: Would the 

estimate of the coefficient or the size of the effect of the interviewer variable 

have been the same if we had drawn a different sample of experimenters or 

interviewers? This question is equivalent to considering the estimates of the 

coefficient of the interviewer variable itself to be a source of random error. In 

other words, when the categories of one of the independent variables are 

sampled from a population of categories, the variance of the dependent variable 

must be decomposed into three types of variances: a) variance explained by the 

model, b) residual variance unexplained by the model, and c) variance due to the 

sampling of the categories of one of the independent variables. 

 

The simplest way to implement this idea is to assume that the effects of all the 

other independent variables in the linear model are the same for all categories of 

the sampled independent variable and to consider that all the differences 

between categories can be modelled as differences between their intercepts. 

Such a model can be implemented easily by using a series of dichotomies to 

represent the different categories of the sampled independent variables and using 

ordinary least square estimates. Because this method does not really model the 

randomness of the differences between the categories but simply represents the 

differences between them as a series of ordinary fixed effects, it is known as a 

fixed-effects model. Precisely because these effects are assumed to be fixed and 

estimable, although they arise from a random sampling process, the estimates of 

these models are conditioned on the sample from which they are estimated. This 

limits the generalization of their results to the population. In other words, the 

estimates of such a model are truly sampled from a population of estimates that 

vary according to the sampled values of the independent variables.  

 

Another way to implement the randomness of the selection of the values of an 

independent variable is to still consider that all the differences between 

categories can be modelled as differences between their intercepts, but now 

include the randomness of the selection process. 

 

Y = i + X + or Y = ( + ) + X + or Y = + X + +   (16)

    

In such a model, the variance of the dependent variable is really broken down 

into three distinct components: the variance explained by the deterministic part 

of the model (that is, the variance explained by the independent variable X), the 

residual variance of the prediction error , and the variance of the intercept  or 

the variance of the random component  of the intercept. In Equation 16,  

represents what is known, depending on the setting, as the cluster effect or the 

panel effect. 

 

Practically speaking, random-effects models are similar to their conventional 

counterpart. Conceptually, the main difference lies in this. The variance-
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covariance matrix of the residuals is no more a square matrix with a single value 

on the diagonal (
2
, the variance of the residuals that is equal for all values of 

the dependent variable under the assumption of homoscedasticity) and zeros 

everywhere else (under the assumption of independence of the residuals). It is 

replaced by a square matrix of a slightly more complex structure, a matrix 

whose elements are matrices (Equation 17). The size of the matrix is the number 

of clusters or panels. Each diagonal element of the matrix is a matrix whose size 

is the number of elements (individuals in the same family, observations on the 

same individual, etc.) in the cluster or panel.  All off-diagonal elements of the 

matrix are null matrices, that is, matrices of zeros. 
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Each of the diagonal submatrices has the same structure as in Equation 18. All 

diagonal elements are the sum of the variance of the prediction error term (
2
), 

which is the same for all individuals or observations, and of the variance of the 

cluster or panel effects ( v
2
), which is assumed to be constant for all clusters or 

panels. The off-diagonal elements of the submatrices are equal to the variance of 

the cluster or panel effects. Thus, the total unexplained variance is the sum of 

the variance of the prediction error and of the variance of the cluster or panel 

effects, and the covariance between the error terms within a cluster or a panel is 

simply the variance of the random cluster or panel effects.  

 

One should note that although both the prediction error and the within-cluster or 

within-panel effect are assumed to be uncorrelated across clusters or panels, the 

two variances are assumed to be the same for every case and within each cluster 

or panel. In other words, the variance of the within-cluster or panel effects is 

assumed to be the same for all panels, and the correlation among the errors 

within each panel is assumed to be the same within each panel. 
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In the context of random effects models or in that of generalized linear models, 

models using a variance-covariance matrix with a structure corresponding to 

(17) and (18) are often referred to as using a ‘compound symmetry correlation 

matrix’ or an ‘exchangeable correlation matrix.’ 

 

 

Random-coefficients Models 

 

From a conceptual perspective, there is no special reason other than convenience 

to limit the randomness to the intercept. Any independent variable can be 

thought as having a random effect rather than a fixed effect. In other words, 

models such as 

 

Y = + iX + or Y = + ( + )X + or Y = + X + X +  

            (19)   

 

are perfectly possible and, indeed, are known as random-coefficient models. 

Such models imply that the actual values of the independent variable X have 

been randomly sampled from a population of values, that the effect of X on Y 

varies across the values of X, and that the estimate of  (in this context, the 

average effect of X on Y), would have been different had we got a different 

random sample of the values of X.  This makes sense if we are willing to assume 

that X is some form of idiosyncratic characteristic that cannot be reduced to a 

more general trait and that the effect of X on Y varies across the values of X 

following a given distribution, almost always the normal distribution with mean 

0. If X were a general trait or could be replaced or ‘explained’ by one or several 

general traits, it would be preferable to replace X by these traits and build a more 

explicit model. Or, if there were reasons to believe that the effect of X on Y 

varied in some systematic rather than random way, it would be more meaningful 

to model this variation as an interaction rather than a random effect.  

 

An example may help to grasp these subtleties. Let us imagine a survey in which 

we are, again, interested in the effect of the interviewers. In our previous attempt 

at modelling this effect, we considered that the influence of the interviewers on 

the data collection was merely on the measurement of the dependent variable. 

This is a very disputable assumption, though. If each interviewer was likely to 

induce some form of systematic measurement bias, at least using a survey 

questionnaire in which there is no clear distinction between what will be a 

dependent or an independent variable, there is no reason to assume that the 

effect will be on the measurement of any variable in particular. In other words, 

the interviewer effect is really a measurement problem, the kind that should be 

dealt with using covariance structure analysis, and not a random effects 

problem. However, it is possible that the difference between interviewers were 

not in the way they recorded the dependent variable, but more in the way they 

recorded the relationship between the dependent variable and some independent 

variable. For instance, one can imagine that some interviewers had harder times 
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at getting answers to more complex questions from less educated people, thus 

creating an artificial relation between complex questions and education as well 

as other potentially independent variables that are related to education such as 

income. These differences would not be spread all over the sample, but rather 

located only in the portions of the sample interviewed by those presumably less 

experienced interviewers. In a situation like this, the differences between the 

interviewers could not be modelled properly as a difference in the intercept of 

the model, but should be modelled as a difference in the effects of education on 

whatever the complex questions were used to measure the dependent variable. 

This could be modelled using a random coefficient for education. 

 

 

Towards Hierarchical Models 

 

Let’s now borrow an example from Goldstein (1995), this time about a political 

survey. We have information on party preference. Along with other information, 

we know the constituency of the voter. There are sound reasons to believe that 

party preference may vary according to sex, age, education and income, but also 

according to constituency. In the context of random-effects models, sex, age, 

education and income are ‘fixed’ characteristics because there are no reasons to 

believe that the values of these variables in our sample are only a sample of the 

possible values of these variables. They are general characteristics, well-defined 

variables that can be used to measure individuals on a given scale or to classify 

them according to given criteria. Constituency is a rather different thing. 

Formally, it can be considered as a variable because it can be used to categorize 

people in an exhaustive and exclusive way. However, it is not something that 

measures individuals on a scale or classifies them according to some substantive 

and meaningful concept such as language, ethnicity or religion. As a variable, it 

is barely more meaningful than a name or postal code. Certainly, many 

differences across constituencies can be explained by the composition of the 

population living in the constituencies and can therefore be accounted for using 

‘fixed’ variables and interactions among these if so needed. However, there may 

be differences across constituencies that cannot be reduced to ‘fixed’ 

characteristics. One way of addressing this problem is to consider these 

irreducible differences as residual variance and to throw them in the error term 

of the model. Another way is to consider that as long as these remaining 

differences can be related to constituencies, the model should be estimated by 

taking advantage of them. Hierarchical models are basically random-coefficients 

models used for taking advantage of the information contained in groupings of 

individuals that are not necessarily sampled as are categories in random-effects 

models, but that cannot be reduced to fixed characteristics either.  

 

Boyle & Lipman (1998) provide an example of the use of hierarchical models 

with Canadian survey data (National Longitudinal Survey of Children and 

Youth). Their study of child problem behaviour assessed the effects of factors 
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measured at three nested levels: the children, their family and their 

neighbourhood. 

 

 

Final Remarks: 
Relations Between Random Effects,  

Clusters and Complex Sample Designs 
 

The relations between random effects, clusters and complex sample designs tend 

to be confusing.  A random effect arises when the model includes an 

independent variable for which the data contain only some values of a 

population of values. A model in which we want to include the interviewer (who 

collected the data) as an independent variable will contain a random effect 

because the data could have been collected by other interviewers. And, the data 

would probably have been different, not because they would have come from a 

different sample of the population of individuals (we are talking of different 

interviewers, not different interviewees), but because different interviewers 

would have collected the data in a different manner. The data would likely show 

some correlation within the groups of individuals interviewed by the same 

interviewer. It is not because these individuals have anything special in common 

(the sample is assumed to be random and the individuals independently selected) 

but because each interviewer is assumed to have a distinct but not otherwise 

specified way of collecting the data. 

 

A proper treatment of such situations involves the use of linear models that 

allow for the inclusion of the random effect. The random effect may be specified 

in various ways. Because the random effect creates groups within the sample 

whose data are thought to be correlated, the specification of the random effect is 

a form of the specification of a correlation or more generally of dependence 

among observations. 

 

Clustering is a sampling technique by which the individuals are not selected 

independently. A simple and classical example is a sample selected by using all 

the members of randomly selected families. In such a sample, only the families 

are selected at random and independently. Such a sample contains less 

information than a simple random sample of the same size, because it is 

expected that individuals will show more similarities with their near relatives 

than with other individuals. The data within the families are likely to be 

correlated, not because the individuals have been submitted to some common 

procedure as it is the case with the interviewer effect,  but because they have not 

been selected independently. The data will likely show some correlation within 

the families. However, because this correlation is a consequence of the sample 

design and not one of the measured independent variables, it is commonly 

handled as a sample design problem and not as modelling problem. Practically, 

the estimates of the variances and covariances of the estimates are corrected 

using one of several common correction procedures such as jackknife repeated 
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replication, bootstrap repeated replication, or Taylor series method (also known 

as the first-order Taylor-series linearization method, the Hubert/White/sandwich 

estimator, the delta method and the propagation of variance). Such correction 

methods allow not only for simple two-stage cluster designs but also for more 

complex survey designs involving strata as well as clusters. Software packages 

implementing these correction methods usually do so with estimation routines in 

order to provide robust estimates of the standard errors of the estimates, but also 

use the information on the sample design (i.e., the sampling weights) to compute 

unbiased estimates of the linear model coefficients as well. 

 

Correlated data may arise in other circumstances. Repeated measurements are 

one of the most common of these. In such cases, information is usually collected 

from a random sample of individuals through several interviews. The 

observations coming from the same individual are not independent and the data 

are correlated. Formally, there is little difference between this situation and that 

of a clustered sample in which all the members of randomly sampled families 

would have been selected. However, repeated measurements data are commonly 

analysed using random-effects and random-coefficients models. The main 

reason for this choice is that the sample consists of a set of related observations 

that would have been different if different individuals had been sampled and 

thus, this situation can be related to the case of the interviewer effect that 

generates a random effect. There is an important difference, however, between 

the case of the interviewer effect and that of repeated measurements: the 

individuals interviewed by the same interviewers were all selected 

independently, whereas the observations on the same individual are not 

independent. Thus, one way to obtain parameters estimates of a linear model 

that takes correlation between repeated measurements on the same individuals 

into account is to include individual-specific effects in the model and to assume 

that these effects are randomly distributed.  

 

Another way to estimate linear models for repeated measurements that take the 

correlation between the observations into account is to use the generalized 

estimating equations (GEE) method (Liang and Zeger, 1986). Models estimated 

with this method do not include cluster- or individual-specific effects (they are 

‘population-averaged’  models), but can deal with different correlation structures 

within the clusters. 

 

Some types of surveys combine the problems created by clustering and by 

random selection of the categories of some independent variable. These are very 

common in educational studies. Samples of children selected from randomly 

selected schools and classes within schools are clustered samples that create the 

problems we have examined before. Estimates should be computed using the 

appropriate weights, and variances of the estimates should be computed using a 

robust procedure that takes into account the weighting scheme. But they also 

create another kind of problem when the classes and the schools – the sampled 

units – to which the children belong are used as factors in an analysis of 
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variance, a regression or any other linear model. Unlike sex, which has only two 

categories, schools and classes are numerous and, by design, the sample can 

contain only a fraction of the population of the schools and classes and thus, 

only a fraction of the possible values of the variable ‘School’ and ‘Class’ are 

present in the sample. In such a situation, the values of the variables that are to 

be used in the linear model have been sampled at random. They should be dealt 

with accordingly, using random-effects models, random-coefficients models, 

mixed-effects models, or hierarchical models. 

 

 

Appendix — Computer Packages 

 

This appendix lists several statistical programs that offer some capabilities in the 

estimation of robust variances from complex survey data, random-effects 

models and hierarchical or multilevel models respectively. The choice arises 

from the authors’ usage of various programs in their own research and is 

therefore far from exhaustive. The sections on robust estimates of variance and 

hierarchical models list a couple of standalone programs and mention the 

capabilities of two relatively well known statistical packages: SAS and STATA. 

SPSS is not discussed further simply because it does not handle complex survey 

data, does not compute robust estimates of variance and handles random effects 

solely within the context of its general linear model procedure which practically 

limits the analyses to multivariate analysis of variance and conventional 

regression. We made no effort to assess what is offered by other statistical 

packages (e.g. SYSTAT), semi-specialized programs (e.g. LIMDEP) or very 

general programs (S-PLUS). 

 

 

Robust Estimates of Variance  

 

SUDAAN from Research Triangle Institute (www.rti.org): SUDAAN offers 

Taylor series linearization (using the generalized estimable equation approach in 

regression models), jackknife, and balance repeated replication robust variance 

estimators. Release 7.5 offers descriptive statistics plus several linear models: 

regression, logistic regression, multinomial logistic regression and Cox semi-

parametric proportional hazards model. May be used with SAS or as a 

standalone product. 

 

WesVar from Westat (www.westat.com): WesVar offers jackknife and balance 

repeated replication robust variance estimators. Version 4 includes descriptive 

statistics plus several linear models: analysis of variance, regression, logistic 

regression, multinomial logistic regression. Standalone program that reads SPSS 

system files and SAS transport files.  

 

SUDAAN and WesVar have been developed by research companies who 

needed these programs to perform their business. Research Triangle Institute is 
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mainly active in medical research, whereas Westat is more oriented towards 

survey research. 

 

Version 8.1 of SAS/STAT, from SAS Institute Inc. (www.sas.com), includes 

two procedures that use Taylor series lineariation to estimate the variances of 

estimates for means and regression from complex survey data. Two caveats 

however. 1) SAS Institute makes available a macro, JACKBOOT that allows 

either jackknife or bootstrap replication methods to estimate standard errors. 

However, the samples drawn by this macro during each replication step are 

samples of individuals instead of samples of clusters. The macro is therefore 

suited to compute the variances of statistics computed using simple random 

samples, but whose variance cannot be computed using a known formula; it is 

not suited for the estimation of the variance of statistics computed using 

stratified or clustered samples. 2) In the version 8.1 of SAS, PROC PHREG, the 

procedure that estimates the Cox semi-parametric proportional hazards model, 

comes with an option that computes the Lin and Wei (1989) robust estimates of 

variance. These estimates of variance are robust in the sense that they allow 

valid statistical inferences when the model being estimated is misspecified. 

Unless the way they are computed is modified to take cluster membership into 

account— which is not the case in PHREG — they rely on the simple random 

sampling assumption and, therefore, they do not allow valid statistical inferences 

from clustered samples. 

 

STATA 7, from Stata Corporation (www.stata.com), includes procedures that 

use Taylor series linearization to estimate the variances of estimates for 

descriptive statistics, two-way tables and several forms of the linear model: 

regression, logistic regression, probit, multinomial logistic regression, Poisson 

regression, censored regression as well as a few others including Cox semi-

parametric proportional hazards model. In the last case, it uses the Lin and Wei 

(1989) robust variance estimates, but allows taking clustering into account. 

STATA also includes procedures that allow the Taylor, bootstrap, and jackknife 

methods with almost any of its statistical models. Contrary to the SAS macro, 

these procedures include options that take the structure of complex samples into 

account in the computation (for the Taylor method) or in the replications 

(bootstrap and jackknife methods). 

 

 

Random Effects Models 

 

SAS/STAT PROC MIXED, a component of SAS, is basically a multivariate 

analysis of variance program that handles a wide variety of form of structures of 

correlation among residual errors. ‘Mixed models’ is just a generic name for 

models that may include both fixed and random effects. Within the framework 

of MANOVA, PROC MIXED allows random effects models and random 

coefficients models. It may be used for repeated measures models. SAS Institute 

makes available two macros, GLIMMIX and NLINMIX, that may be used to 
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expand the possibilities of PROC MIXED. GLIMMIX uses PROC MIXED to fit 

generalized linear mixed models, whereas NLINMIX uses PROC MIXED and 

PROC NLIN to fit nonlinear mixed models. SAS/ETS includes a procedure, 

PROC TSCS, designed to estimate econometric models using time series cross-

sectional data, which are basically random effects regression models. 

 

STATA 7 offers a wide variety of procedures to handle various forms of random 

effects models, specially in the context of panel data: random-effects tobit, 

probit, logistic regression, complementary log-log regression, Poisson 

regression, as well as a few others. Interestingly, most of these procedures offer 

robust standard errors estimates computed with the Taylor linearization method 

as an option, at least for some of the models they estimate. As mentioned above, 

the software includes procedures that allow the Taylor, bootstrap, and jackknife 

methods with almost any of its statistical models. Most serious limitation: 

STATA 7 has little capabilities for the estimation of random coefficients 

models. In principle, random coefficients models could be estimated using the 

user provided hierarchical generalized linear models described below. 

 

 

Hierarchical or Multilevel Models 

 

Hierarchical models and multilevel models are two names that have become 

widely spread. Both refer to the same kinds of models, which can be described 

as random coefficients models developed within the framework of regression, 

rather than that of analysis of variance, to handle problems pertaining to the 

modelling of correlated data arising from clustered sampling. The two most 

widely recognized standalone programs for the estimation of these models are 

MLWin, developed by a team lead by Harvey Goldstein from the Institute of 

Education of the University of London (www.ioe.ac.uk/mlwin) and HLM, 

developed by Stephen Raudenbush, Anthony  Bryk and Richard Congdon and 

distributed by Scientific Software International (www.ssicentral.com). Each 

program can estimate a variety of specific linear models and provide robust 

estimates of standard errors. Detailing the differences between the two programs 

goes beyond the scope of this appendix.  

 

Donald Hedeker and Robert D. Gibbons of the University of Illinois at Chicago 

have developed a suite of programs (MIXOR, MIXREG, MIXNO, MIXPREG, 

and MIXGSUR) for mixed-effects linear regression, mixed-effects logit or 

probit models for binary or ordinal outcomes, mixed-effects logistic regression 

for nominal outcomes, mixed-effects Poisson regression, and mixed-effects 

grouped-time survival analysis. The suite is available free of charge at 

http://www.uic.edu/~hedeker/mix.html. 

 

Three STATA users, Sophia Rabe-Hesketh, Andrew Pickles and Colin Taylor, 

have committed themselves to the endeavour of writing a procedure for the 

estimation of hierarchical (or multilevel) generalized linear models. This 
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procedure is distributed by Stata Corporation as “gllamm6”. The procedure has 

been written following McCullagh and Nelder (1989) presentation of 

generalized linear models (which has very little to do with the much more 

conventional “general linear model” approach we refer to in discussing the 

limited capabilities of SPSS). Specific models can be estimated by combining 

one of several distributions for the random component of the model (in 

gllamm6, these are binomial, gaussian, gamma, or Poisson) with one of several 

links (identity, log, logit, reciprocal or probit). The procedure does not seem to 

provide robust standard errors of the estimates; in principle, it should be possible 

to use the procedure with the robust variance estimation procedures of STATA. 
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