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Abstract

In support of the logit transformation of the life table survivorship function I(x),
Brass has noted that when a variable assumes values between 0 and 1 its logit
varies from - oo to oo . Not only that, if the variable is a function of x, which
I(x) certainly is, then the logit "will vary almost linearly with the x variable." If
that is the case, then the logits of the life table functions of any two life table
survivorship functions must exhibit strong linear relationship and indeed they
do. In this paper it has been shown that while that strong linear relationship
between the two logits is an empirical fact, it is definitely not due to the
linearity between the logit of /(x) and x. The empirical linear relationship
between the two logits can certainly hold for other nonlinear functional
relationships between the logit and x. The field of such relationships can be
considerably narrowed down by introducing necessary restrictions that the I(x)
function must meet.

Résumé

A Tappui de la transformation logit de la fonction de survie /(x) des tables de
survie, Brass note que quand une variable assume des valeurs entre 0 et 1, son
logit varie de — o & co . Plus encore, si la variable est une fonction de x, ce qui
est certainement le cas de /(x), le logit varie de fagon presque linéaire avec la
variable x. Si tel est le cas, les logits des fonctions des tables de survie de deux
fonctions de survie quelconques doivent présenster une forte relation linéaire, ce
qui se vérifie. Le présent article démontre que, bien que la relation linéaire entre
les deux logits soit un fait empirique, elle n’est certes pas attribuable & la
linéarité entre le logit de /(x) et x. La relation linéaire empirique entre les deux
logits vaut certainement pour d’autres relations fonctionnelles non linéaires entre
le logit et x. Le champ de relations comme celles-ci peut étre considérablement
réduit par I’introduction de restrictions nécessaires auxquelles la fonction doit
&tre assujettie.
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Introduction

Application of the logit transformation to the survivorship function I(x)
proposed by Brass (1975) was a significant step towards statistical modeling of
life tables. He recommended the transformation since a) the logit of I- I(x)
ranges from -co to o against a range of 0 to 1 of I- /(x) and furtherb) the logit
varies almost linearly with age x. Accordingly, he theorized that the logits of
two life tables must exhibit a strong linear relationship which has been validated
by many examples (Keyfitz, 1991).

The purpose of this paper is to show that although a linear relationship (if it is
so0) between the logit of /- /(x) and x guarantees linearity between the logits of
any two life tables, it is by no means a necessary condition. In fact, it will be
shown that this condition is not only not necessary but it is also not expected to
hold for the I(x) function. Consequently, the empirical linear relationship
between the two logits must derive its support from some type of a nonlinear
relationship between the logit of /- /(x) and x.

An attempt will be made in this paper to develop a justification for the logit
transformation of the survivorship function from another perspective. Thereafter,
the mathematical functional form describing its relationship with age will be
derived by taking into account certain limiting conditions. But first, let us
begin by looking into the consequences of a linear relationship between the logit
of I- [(x) and x.

The Logit of 1- I(x) and its Characteristics

Brass (ibid) has used the following definition of the logit transformation of
p (0sp<1) given by

logitp =Y In -2
TR )

Thus for p= I- I(x), (1) becomes

logitp( - I(x) = % In (%{)-) )
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It is easy to see that as x increases from 0 to some maximum age a, I(x)
declines from 1 to 0 and the logit of /- /(x) increases from -co to c=. If'the logit
is linearly related to age, then we should be able to write (disregarding the
multiplier of 1/2),

1-1(x)
In( Yy = a+bx 3)
I(x)
or
l(x)=—1——— 4)
@ o

It is obvious that if (3) holds then either a or 5 or both must be nonzero. In that
case (4) will not meet conditions like /(0) = I and /() = 0. The boundary
conditions can be met only if for nonzero b, x has a range of -ce to .. Thus, for
b>0, I(-0) = I and (e2) = 0 and vice versa for b<0. Obviously, such limits

cannot be applied on the survivorship function.

It can be shown that a distribution function of the form of (4) has a density
function like (Brass, ibid)

y = %sech’[(l—a}/ﬂ] cee < Z oo ®)

The curve generated by y is symmetrical and bell shaped. In no way can it be
made to resemble the comparable curve in the life table i.e., the curve generated
by the age distribution of deaths. Brass (ibid) however, cites (5) as an example
of the logit being a linear function of age (his formula in the paper has a
typographical error as it begins with 1/2 instead of 1/(23)).

We conclude this section by pointing out another oddity of the linear
relationship. Differentiating both sides of (3) and equating, we get

IR |

el Ol ©
where
L) _
ey H(x) @)

is the force of mortality. Simplifying (6), we get
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) = b (1- (%) ®

which requires that y/(x) has to increase with x and it has a minimum value of
0 atx= 0 and a maximum value of b at the last age. This is contrary to the
well known pattern of the variation of t(x).

Therefore, any explanation for the linearity between the logits of the survivorship
functions say, I(x) and I (x) of any two life tables, described by

logit (1- I(x)) = a+ b logit (1- I*(x)) &)
should be sought not in (3) but somewhere else. At this point it can be seen
that if the logit function can not be expressed as a linear function of age it must
be a nonlinear function. If that functional relationship be such that

logit (1- Ix)=u+vn (x) (10)
and

logit (1- I*(x))=u * +v *n (x) an

where n(x) is a nonlinear function of x which remains the same for all life tables.
Then it can be shown that (9) will hold for

u=a+ bu* (12)
and
v =hv* (13)
Our next problem would then have been to search for a functional form of this
n(x) if it had not been recently shown that this simple linear model (9) fails to
meet a boundary condition unless =1 (Mitra, 1995). Forcing that restriction,
however, lowers the quality of the fit. Therefore, acknowledging the advantages

of the logit transformation we now turn our attention to look for a possible
underlying relationship between I/(x) and x.

Another Justification of the Logit Transformation
It is obvious that a linear relationship cannot exist between I(x) and [*(x)

unless they are equal for all x. In all other cases /*(x) plotted against I(x) will
generate a curve that will be either concave upward or downward accordingly, as
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the life expectancy of the formeris less or greater than the same of the latter.
The simple relationship between the logits of two life tables is, however,
possible if among other things the rate of change of the survivorship function
I(x) at any age x, i.e., d I(x)/dx turns out to be proportional to its value at that
age, i.e., [/(x) and also to its complement, ie., I- /(x). This seems quite
logical because the pattern of change in /(x) at age x can be expected to be
determined by the number of those who have managed to survive to that age and
also by those who have not. Such a relationship can be expressed in the form of
an elementary differential equation as

I - k- 1) o w

where k(x) accounts for all other unknown patterns of variation in /(x). The
solution of (14) turns out to be expressible in terms of the logit transformation.
This may be seen by writing (14) as

dl(x)

e D 1)

Integrating both sides of (15), we can write

1-1(x)

In( I

) = f(x) (16)

where f(x) remains to be determined.

The Search for a Form of f(x)

In order to propose a functional form of f(x) we begin by rewriting (14) as (see
(M,

ux)=f@01- ix) an
where f' (x) = -k(x). We know (see discussion following equation 8) that f'
() cannot be a constant, or that f (x) cannot be a linear function of x. Thus f (x)

must be nonlinear function of x, a generalized form of which can have two or
more additive components such that we can write

fR=g&)+h@x) + ... (18)

Accordingly, restricting (18) to first two terms (17) can be expressed as
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B () =g ()1 ix)) + A (x)(1- Ux)) (19)

Asx — 0, let us suppose that
Hm
—g'X1-lx) =0 (20)
x—0

which will happen when g’ (0) is finite since /(0)=1. In that event, the second
component must have a limiting value (see (16)), like

Am G @ya—iw) = o @1)
x—0

It can be seen that (21) holds when
h(x)=Inx (22)

or
h(x) =

X |

(23)

because substituting (23) in (21) we get

lim 1-/(x) _ lim I(x)u(x) = p0) 24)
x—=0 x x=0

by the application of L'Hospital's rule and the fact that /(0)=1. Another simple
form of 4 (x) like

h(x) = In (¢ -11) 25)

or

W(x)= —— = 1+ (26)
e

also satisfies (21). Since either of these two forms of A(x) meets the boundary
condition, we have found good reasons to choose the latter. From theoretical
considerations, the function A(x) should preferably have a wider range of
variation. A comparison of (22) and (25) reveals that the rate of change of the
formeris considerably less than that of the latter, and especially so, for large
values of x. Next, we have found that the reproducibility of the model is much

better with (25) than with (22) as measured by the R? coefficientbetween the
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model and the actual values (of the order of .99 versus .92). Thus, our choice
for h(x) has been based on both theoretical and empirical grounds.

For the other component g(x) of f{x), we may begin with the simple linear form
a+ bx. Note that the nonlinearity of f{x) has, at least in part, been taken care of
by h(x) which also fulfills the requirement that the logit function equals -.e when
x=0. This linear form of g(x) together with A(x) make f{x) quite large at the last
age 0 which is some age above 100. However, the theoretical value of the logit
at that age is e and therefore a case can perhaps be made in support of modifying
g(x) or by adding a third component k(x) to (18) in such a way that the
condition at the upper extreme can also be met. As a trial solution to this
_ problem, we have chosen to experiment with a simple function like /(& -x)
although there are many others like - In(Q-x), (e?*-I )H etc., fulfilling that
requirement.

Accordingly, we can express g(x) as

gx) =a+ bx +

P 27

The Graduation Model and its Application

What follows next is the formulation of a mathematical model for the logit
function a complete form of which may now be derived from the preceding as

l—l(x)) = [n(e*-1)+a+ bx+

j
m( I(x) a-x

28)

Observe that we have not provided for a coefficientof the first term of the right
hand side of (22). If we did and that coefficient in any given example turned out
to be other than one, the limiting condition (21) would have been violated.
Therefore, we have chosen to rewrite (28) as

L)

7 Y — In(e*=1) = a+ bx+ p—

29)

such that the entire left hand side of (29) can be taken as the dependent variable
for estimating the parameters @, b and ¢ by the OLS regression. For that
exercise the value of @ has been arbitrarily set between say 100 and 125 in this
study.
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Note that the parameters a, b and ¢ thus estimated will produce the minimum
value of the sum of squares of deviation for the model equation (29). However,
it may not minimize the sum of squares of differences between the actual and the
model values of I(x) where the latter derivable from (29) is given by the
nonlinear expression

I(x)= 1

- 1+ (ex _ 1)ea+bx+c/(ot—x) (30)

Accordingly, we have used the parametric values generated by (28) as seed
values to produce new estimates for the nonlinear model equation (28).

Results

In Table 1, a goodness of fit index of this nonlinear model mesured by the R
values for differentvalues of O starting at 100 and ending at 125 at 5 year
intervals has been presented.

Nine life tables were selected for this study covering a range of life expectancy of
53 to 70 years for males and 52 to 78 years for females. Although R values are
quite large (over .99) for all values of &, we have arbitrarily decided to set its

value at 120 for subsequent investigation. Next for that value of O, the

estimated values of the parameters may be seen in Table 2.

It is interesting to note that for all life tables, the parameter » assumes values
very close to -1 and has a tendency to increase with life expectancy. However,
the three parameters tend to vary simultaneously with changes in levels of
mortality. As such, when one of the parameters is allowed to increase, holding

the other two constant, it can be seen from (30) that the denominator becomes
uniformly larger or /(x) uniformly smaller. Like b, the parameter ¢ is also
negative and appears to have a range of variation from -6 to -4 in round numbers
for both males and females. The parameterc on the other hand seems to be
most sensitive as its range of variation extends from as low as 140 to as high as
360 for the males. The range (185/270) is considerably narrower for the females.

In Table 3, the values of /(x) generated by (30) for three of the nine countries
have been presented together with their actual values. The two sets are very
similar to one another as one may anticipate from the larger R? values. A
graphical comparison of the model and the actual values can be made for the
same countries from Figures 1 and 2 for the males and the females respectively.

In general, the match between the two sets of figures seem to be quite good.
The only criticism of any significance that can be levelled is that for the males of
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Figure 1. Observed and Expected Values of Survivorship
Function for the Males of Three Countries
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Figure 2. Observed and Expected Values of Survivorship

Function for th
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Mauritius, the decline in /(x) at advanced ages is slightly more rapid for the
model table. Next, observe that life tables of differentcountries (Mauritius and
Colombia males in this illustration) may show crossovers and the three
parameter model seems to be flexible enough to adjust its parametric values
accordingly.

It is also of some interest to mention that each of the three parameters can vary
independently of the other two. Among the nine countries, the largest value of ¢
is found in the life table of Mauritius males which has medium but not the
smallest life expectancy. Its g on the other hand is smaller than that of Puerto
Rico which has the highest life expectancy. In order to clarify this point Figure
3 has been drawn by varying one parameter at a time in the model equation of
the Columbian males.

Observe that the parameter b has almost no effect at the early childhood ages but
in spite of its small range of variation, it can affect the mortality curve
significantly at other ages for a slight change in its value. The parameters @ and
c on the other hand, show significant effectat ail ages. By taking partial
derivatives it can be seen that the contribution of @ is more than that of ¢ except
at the very end of the life span. It may be recalled that the last component with
the parameter ¢ was introduced in the model primarily to meet the boundary
condition at the upper end of the age range.

It is interesting to see that the largest value of b and ¢ found in this set of
countries, produced similar effects at older ages (65+) in terms of smaller
survivorship probabilities. In this example, it may also be seen that the
probabilities can be increased at all ages by simply lowering the value of the
parameter a. What is apparent from all these is that appropriate combinations of
the three parameters should reproduce any distribution of the survivorship
probabilities /(x) reasonably well. Further investigations are needed to link
these parameters with specific patterns of mortality.

Conclusions

The long search for a mathematical function that can adequately describe the
pattern of variation of the survivorship probabilities is not over yet. The
complexity of the problem derives from nonlinearity of the rate of change of these
probabilities. In that endeavor, even the modern high speed computers with
programs like TableCurve can not rise to the task since alternatives to a linear
function are infinite in numbers. In order to find such a function, if there is one,
one has no choice but to postulate (as others have done in the past) the pattern of
variation of one or more of the life table functions. Recently, such an attempt by
Heligman and Pollard (1980) on the probabilities of dying produced an eight
parameter model. Another approach based on the force of mortality (Mitra, 1983
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Figure 3. Curves of I(x) Drawn by Varying the
Parameters One at a Time for Colombia Males
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& 1984) generated a three parameter model of the survivorship probabilities I(x)
which could be linearized by applying the transformation In(- In I(x)). It has
been shown in this paper that an alternative approval, simple and plausible, can
also be tried to describe the pattern of variation of /(x). This endeavor resulted
in a three parameter nonlinear model which fortunately could be linearized for
parametric estimation (equations 28 & 29).

The result seems to be quite encouraging, perhaps more so than the double log

model mentioned earlier. The goodness of fit measured by the R® coefficient
range from .9968 to .9998 for a set of eighteen life tables for nine countries

(separately for males and females), covering a wide range of life expectancy (53,

-78).- Further testing of the model is needed, although there seems-to-be enough - -
evidence to believe that the model can be used to reproduce any of the currently
available distributions of the survivorship function to a reasonable degree of
accuracy.
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