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Abstract

A two parameter model of mortality is presented which is a simplification of an earlier three
parameter model formulated by Mitra (1983). It expresses #n(-£(x)) as a linear function of #n(x) and

-+ Info=x) where-x-is-age; o is the-upper limit-of life-and £(x)-is-the probability-of surviving-from-birth--
to age x. This is accomplished by constraining the model to reproduce the given value of infant
mortality. The parameters measure two dimensions: the level and the pattern of mortality. The model
is applied to real and model life tables and compared with Brass's logit model. The model is shown to
fit as well as the Brass model without the difficulty of choosing a standard table.

Résumé

Un modéle de mortalité & deux paramétres est présenté—Ila simplification d'un modéle & trois
paramétres formulé par Mitra (1983). Il exprime ¢n(-{(x)) comme une fonction linéaire de fn(x) et
fn(a-x) ol x est l'dge, o est la limite d'dge supérieure et £(x) est la probabilité de survie de la
naissance a l'dge x. Cette simplification est réalisée en forgant le modéle a reproduire la valeur
donnée de la mortalité infantile. Les paramétres mesurent deux dimensions : le niveau et la
configuration de la mortalité. Le modéle est appliqué aux tables de mortalité réelle et modéle, et
comparé au modéle logit de Brass. Il s'avére que ce modele est aussi bien ajusté que le modéle Brass
sans imposer la difficulté de choisir un tableau standard.

Key Words: weighted linear regression with constraint, survivorship
function, infant mortality, force of mortality

The Problem

The practical need for models in many fields of scientific endeavor has often
spurred on investigations where the end results are substantiated more by
empirical tests rather than by strong theoretical arguments. In the field of
demography, this is most exemplified by the history of modeling life table
functions which perhaps began with Gompertz (1825). He attempted to
describe the force of mortality as an exponential function of age by arguing
that man's ability to resist death decreases with age. The fit was found to be
reasonably satisfactory except for the extreme ages and especially so for the
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childhood age range where mortality declines rather than increases with age.
Makeham (1860) inserted an additive constant to the Gompertz function by
noting that a chance factor independent of age also affects mortality. His
three parameter model produced a better fit but still left much to be desired.

Many years later, Perks (1932) modified the Makeham formula by
incorporating a denominator comprised of a linear compound of two
exponential functions, increasing the number of parameters to five in the
process. That did not stop the search for a better fit and of late, Heligman
and Pollard (1980) came up with an eight parameter model to fit the curve
generated by the probability of dying at successive ages. An excellent
summary and discussion of the utility of these models may be seen in a
recent paper by Keyfitz (1991).

Petrioli and Berti (1979) have proposed an interesting model by first
defining a mortality resistance function

z(x)= 1-0(x) " a-x

which is zero at both ends of the age continuum and positive elsewhere. Its
pattern of distribution has been empirically demonstrated to be a bell-shaped
curve; the functional form of which could be expressed as

r(x)=x% (@-x)F gux*+vxsw @

Substitution of (2) in (1) results in an equation that expresses £(x) as a five
parameter function of x. The parameters have been estimated by solving (2)
for selected values of x which includes the age at which r(x) assumes its
maximum value. In spite of their claim for a good fit, the number of
parameters, the nonlinearity of the model, the functional form of r(x), and
the nature of variation of the parameters over levels of mortality, leave much
to be desired. Besides, given five points, a fourth degree polynomial would
do just as well or better as Valcovics (1993) has found with a variety of life
tables.

Another attempt to model mortality has been made by Gavrilov and
Gavrilova (1991) who have proposed an "avalanche-like destruction" of an
organism in natural aging. The model they came up with after defining a
number of parameters can be written in a simpler form as
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nf(x) = A+Bx+C/n(1+DeEx) 3)

Unfortunately, the novelty of the idea did not materialize in reality and the
authors are hopeful that the model can be improved by further research. If
additional parameters beyond its present five are needed to produce a better
fit, then the model's usefulness will be severely reduced.

An indirect approach to modeling life table functions by Brass (1978)
produced a linear relationship between the logits of the survivorship
functions of two life tables. The goodness of fit with this model in any given

_..exercise depends on the selection of a standard life table_ It has been found

that the procedure has a tendency to overestimate life expectancy by
overestimating £(x) at older ages (Keyfitz, 1991). However, due to the
simplicity of the model (for its dependence on only two parameters), users
overlook the deficiencies. Thus, although the Brass model cannot be
regarded as one that is a direct function of age, we have taken the liberty of
comparing its goodness of fit with our model presented below.

Some years ago, Mitra (1983, 1984) experimented with a mortality model
which was developed from the observed pattern of the distribution of the
force of mortality. A simple formulation of the functional relationship
between a person's ability to withstand death and the person's age, led to the
model expressing £n(-/n £(x)) as a linear function of /nx and ¢n(wo-x), where
X is age, o is the upper limit of life, and 4(x) is the probability of surviving
from birth to age x. That model produced encouraging results when tested
against both Coale and Demeny's (1983) regional model as well as real life
tables.

One of the ways that this three parameter linear model can be used is to
generate model life tables by letting the parameters vary. However, the
usefulness and the validity of the model depend also on its ability to generate
data from limited information. The purpose of this paper is to investigate
whether the model can generate consistent life table functions from given or
estimated value(s) of £(x) at a critical point, specifically, at age one.

The Model and the Method of Estimating its Parameters
Let us begin with a brief overview of the derivation of the functional form of

the proposed model, henceforth referred to as the double log model.
Denoting by 4(x), the life table survivorship function at age x and
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ding
b (x) = -2l )

the force of mortality at age X, one can write
£(x) = ™), )
X
where £({x) =fu(x) dx. ©6)
0

Observe that f(x) must meet the following conditions

(a) f{0)=0 since £(0)=1

(b) f(o) = so that £(c) = 0, where o is the life span

(¢) f(x) or w(x) is uniformly positive since £(x) is a monotonically
nonincreasing function of age. Also u(x) assumes very large values at two
extremes and a minimum value at an appropriate age.

Clearly, a simple algebraic function that is proportional to x™ meets (a) with
0<m, @)

and another function that is proportional to the reciprocal of (ci-x)" meets
condition (b) with

n>0. ¥
Combining the two as

- Axm 3
f(x) TEL with A > O ©)

we get a function which meets conditions (a) and (b). Interestingly enough,
its derivative

Lo _ mAx™! .  nAx™
flx)= p(x) (a-x)“+ (@-x) F (10)

can be made to meet condition (c) by setting a limit on the permissible range
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of variation for the parameter m. Note from (10) that

(11

since pu(x) is large at age 0. Therefore, combining with (7), the boundary
condition for m can be specified as

0<m<1L (12)

It has been shown (Mitra, 1984) that the empirical fact that the force of
mortality assumes its minimum value at a relatively early age, requires

The model described in (5) and (9) can be linearized by applying the
logarithmic transformation twice to get

fn(-fn £(x)) =4n A +m /nx - n fn(o-X). 14)

The parameters have been previously estimated by Mitra (1984) for selected
life tables by using the straightforward method of least squares while setting
a constant value of o such as 100 or 110.

The usefulness of the model can be further demonstrated by showing that it
can be reduced to a two parameter model for given values of o, and a single
piece of a priori information such as the infant mortality rate. Since the
complement of infant mortality rate is £(1), it follows that for the model to
reproduce the infant mortality, the identity

n(-fnf(1)) = fnA + 0 - n £n(oe-1) (15)

must hold. Subiraction of (15) from (14) then gives

n(-fnf(x)) - fn(-¢nf(1)) = m £nx - nffn(o-x) - fn(a-1)] (16)
the right hand side of which, for a given value of «, is a linear function of
fnx and fn(o-x) - fn(o-1) with two parameters, m and n. For the estimation

of these parameters, (16) can be treated as a linear regression model with
zero intercept. However, it may be noted that the dependent variable does not
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have a constant variance since for a given value of X, the variance of £(x) can
be estimated as

V() = £(x)(1-£(x)). an

As the variance of a function of y, f(y) is approximated by the formula
V(EW)) = V() [£ () ] feriy) (18)

where E(y) is the expected value of y, we can derive the variance of the
dependent variable for a given value of £(1) as

8(x) (1-8(x))
2 (x) (nl(x))?

Vin(-tnt(x)) -n(-nl(1))] =

19
1-¢(x) e

0(x) (0nl(x))?

resulting from equations (17) and (18). Consequently, the parameters of the
linear model (16) can be better estimated by the method of weighted least
squares with the constraint that the intercept is zero. For a given x, the
weight is the corresponding value of the reciprocal of (19).

It may be seen that when the constants are estimated by following this
procedure, (16) can be expressed in the form of (14) by writing the intercept
term as

¢nA = fn(-fnf(1)) + n n(a-1) (20)

Experiment with the Double Log Model and Discussion of Results

Two data sets were employed to examine the double log model: Coale and
Demeny's (1983) model life tables and real life tables from the 1985 United
Nations Demographic Yearbook (1985). A set of 52 life tables were selected
from Coale and Demeny's (1983) tables covering the entire range of female
life expectancy from 20 to 80 years, with the difference between the life
expectancies of two successive life tables held constant at 5 years. Male life
tables were chosen which corresponded to those female tables with the 5 year
interval between life expectancies. The 52 life tables comprised four subsets
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of 13 life tables selected from each of the four regions of Coale and
Demeny's (1983) model life tables. For operational convenience, female
tables were selected from East and West and male tables from North and
South.

A sample of six life tables covering a wide range of mortality levels were
selected for study from the 1985 United Nations Yearbook (1985). These
tables were Botswana 1980-81 male and female, e(0) = 52.72 and 59.32,
Bahrain 1976-81 male and female, ¢(0) = 63.32 and 66.25, and Japan 1984
male and female e(0) = 74.41 and 79.75. Furthermore, four other United
Nations (1985) life tables were chosen as standard life tables for the Brass
model. Two "low" mortality tables, England and Wales 1982-84 male and

female, e(0) = 71.48 and 77.04, and two "high" mortality tables Mexico 1970

~ male and female, e(0) = 59.14 and 63.05, were selected.

Estimates of the parameters "m" and "n" of equation (16) were found for
each life table using the method of weighted least squares with the reciprocal
of (19) as the weight. The value of o was set at 100. Since /n(c-x), an
element of our regression equation (16), is undefined at age 100, the 20 ages
used in the computations ranged from 1 to 95 for the model life tables.
Because the highest age level for the United Nations (1985) life tables is 85
years, only 18 ages were used in those computations. The results of these
regressions are summarized in Tables 1 and 2 for the model tables and Table
3 for the six national tables. For the model tables, each life table is identified
by its geographical region, a level number assigned by Coale and Demeny
(1983), and its life expectancy. The values of £(1) and the square of the
multiple correlation coefficient, R?, are presented for each life table.

Note that the values of "m" and "n" meet the boundary conditions set in (12)
and (13) with one minor exception in the South level 23 for the male life
table. The value of -.001 of the parameter m is not significantly different
from 0 and accordingly, the derivation of expected values of life tables
should be based on m = 0 for consistency. Next, the readers may like to note
that the parameter "n" uniformly increases with decline in mortality or in life
expectancy. The parameter "m" on the other hand shows an inverse
relationship, i.e., it decreases with life expectancy until level 19 or a life
expectancy of 65 is reached in both the East and West region. The pattern is
the same for North region males, while for the South region males the
decline continues to the next to the last level. This phenomenon can perhaps
be explained by the behavior of the parameter "m" which can be decomposed
into two components (Mitra, 1983). The first contributes to a decline in
mortality with increase in age, while the second keeps the mortality
increasing with age. The combined effect of these two components for
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various levels of mortality seems to be the cause of the reversal of its trend.
The contribution of "n" on the pattern of mortality, however, is more
straightforward as it varies directly with life expectancy. Thus, "m" is more a
measure of the overall pattern of mortality, while "n" is an indicator of the
overall level of mortality. From a technical point of view, an infinite number
of life tables can be constructed by combining any value of "m" with any
value of "n" as long as they meet the boundary conditions. In the regional
model tables of Coale and Demeny (1983), the region may be looked upon as
a measure of the pattern of mortality, and the life expectancy as the overall
measure of mortality. It may therefore be said, that as those life tables are
based on two independent dimensions of mortality, the double logarithmic
model presented in this paper also has two, albeit different, dimensions.

TABLE 1. THE PARAMETERS OF THE REGRESSION EQUATION (16) FOR
SELECTED FEMALE LIFE TABLES.

Region Level  e(0) 40 m n R?
East 1 20 57180 L128%* .899+* 99524
3 25 .63788 122w 96T** .99580
5 30 69350 116** 1.028** 99628
7 35 .74135 .108** 1.088** 99666
9 - 40 78317 .100** 1.150%* 99693
11 45 .82003 .089** 1,223+ 99713
13 50 .85260 073 %* 1.318%* 99709
15 55 .88267 .057** 1.417+ 99677
17 60 91028 .043* 1.523%* 99607
19 65 93548 .030 1.646** 99481
21 70 95904 .033 1.776** 99293
23 75 97861 .087 1.838* 99164
25 80 99245 245%* 1.812%* 99239
West 1 20 63445 .192%* 902%* 99836
3 25 69444 . 188%* 950%* .99867
5 30 74389 . 184%x* 99 5%* 99885
7 35 78571 179%% 1.042%* .99892
9 40 82178 173%* 1.095%* 99891
11 45 .85336 .165%* 1.155%* 99881
13 50 .88121 156%* 1.226%* 99857
15 55 90606 140%* 1.328%* 99814
17 60 92884 127%* 1.439%* 99732
19 65 94965 117%* 1.564** 99604
21 70 .96884 123** 1.707** 99412
23 75 .98470 187k 1.786** 99277
25 80 99555 397** 1.752% 99376

*p<.05  *p<.01
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TABLE 2. THE PARAMETERS OF THE REGRESSION EQUATION (16) FOR

SELECTED MALE LIFE TABLES.
Region  Level e(0) i1 m n R?

North 1 17.551 62858 .220%* 825%* 99671
3 22.341 68919 223+ .891** 99732
5 27.163 73883 218% 946** 99781
7 32.012 78062 213%* 994** 99820
9 36.884 .81650 . .208%* 1.040%* 99847
11 41.779 .84777 203 1.087** 99862
13 46.697 .87529 196%* 1.145%* .99870
15 51.440 .89858 185%* 1.222%* 99857
17 56.319 92054 177%* 1.299%* .99819

e 190061312 94001 . 173% . 1382%k L L 99752 .
21 66.391 95950 175%* 1.480%** 99645
23 71.585 97580 196+ 1.581** 99497
25 77.289 98944 281%* 1.627** 99447

South 1 19.920 66423 245%* 42k 99375
3 24.661 71056 227 .835%* 99448
5 29.337 74894 .209%* 916%* .99512
7 33.950 78154 191 992 99568
9 38.501 .80975 172 1.068** 99614
11 42.861 .83337 150%* 1.152%* 99657
13 47.372 .85474 122%* 1.244%* 99679
15 51.869 .87498 094x* 1.338** 99675
17 56.341 .89397 .064+* 1.437** 99636
19 61.252 91361 028 1,554 .99528
21 66.080 93372 .007 - 1.642% 99375
23 70.993 95343 -.001 1.716%** - .99199
25 76.002 97178 019 1.765** 99076

*p<.05 *p<Ol

The goodness of fit of the model was measured in two ways. First,
examination of the square of the multiple correlation coefficient, R? in
Tables 1 and 2 shows a range from .99164 to .99963 for both the model and
real life tables. Second, encouraging results were obtained when the actual
values of £(x) were regressed on the expected values of £(x) using ordinary
least squares. A perfect model would produce an intercept of zero and a slope
of one. For the 52 model life tables and the six national tables, the largest
absolute value of the intercept was .051 and the slope ranged from .923 to
1.073.
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TABLE3. THE PARAMETERS OF THE REGRESSION EQUATION (16) FOR SIX
NATIONAL LIFE TABLES (B6 ASCENDING LIFE EXPENTANCY AT BIRTH.)

Sex/ 5
Country year e(0) (1) m n R
Male
Botswana 80-81 52.72 92402 207%* 1.419%* 99906
Bahrain 76-81 63.32 94669  .039* 1.918% 99873
Japan 84 _ 74.41 99338  .200%* 2.449%% 99912
Female
Botswana 80-81 _ 59.32 93941  .153* 1.546** 99818
Bahrain 76-81 66.25 95130  .036* 1.836** 99910
Japan 84 79.75 99471 071 2.571% 99963

*p<.05 **p<.01

FIGURE 1. OBSERVED AND EXPECTED {(x) 'VALUES DERIVED FROM THE
DOUBLE LOG AND BRASS MODELS FOR TWO LIFE TABLES

1.2

1 ) Japan 84 female

Ix)

0 5 15 25 35 45 55 65 75 85
age

—observed values - - from double log mode! ‘- from Brass model

The standard table for Botswana is Mexico 70 male. For Japan it is England and Wales 82-84 female.
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TABLE 4. RESULTS OF REGRESSING ACTUAL {(x) FOR THE DOUBLE
LOGARITHM MODEL AND THE BRASS MODEL, USING BOTH
ENGLAND AND WALES 82-84 (BRASS-E&W) AND MEXICO 70
(BRASS-MEX) AS STANDARD TABLES.

Country Year Sex Model Slope Intercept Jid
Botswana 80-81 male double log 985 .008 99630
Brass-E&W 952 .032 98557

Brass-Mex .966 .025 99271

female  double log 985 .009 99332

Brass-E&W 962 .032 97599

Brass-Mex 977 .020 99314

Bahrain 76-81 male double log 1.011 -.008 99537
Brass-E&W 998 005 99641

Brass-Mex 1.015 -.008 99781

female double log 1.003 -.003 99679

Brass-E&W 1.007 -.002 ..99046

Brass-Mex 1.011 -007 99923

Japan 84 male double log 1.001 .000 .99340
Brass-E&W 959 .034 .99864

Brass-Mex 964 .030 99773

female double log 991 .008 99624

Brass-E&W 1.004 -.003 .99830

Brass-Mex 949 .047 99818

Another way in which the double log model was evaluated was to compare it
with Brass's logit model. For the six national life tables, expected values of
£(x) were generated using this model and the Brass model. Expected values
for the Brass model were calculated using both "low" and "high" mortality
standard life tables, England and Wales 1982-84 and Mexico 1970. The
observed /(x) values were regressed on the expected values and the resulting
slopes, intercepts, and values of R are presented. in Table 4. Figure 1
graphically compares two life tables with the observed values of 4(x) and the
expected values from both the double log model and the Brass model, using
the standard table which produced the best results. The values of 4(x) on
which Figure 1 is based, can be found in Table 5. Examination of Tables 4
and 5, and Figure 1, show that the double log model fits as well as Brass's
model. The main advantage of the double log model over the Brass model is
that a standard table need not be chosen.
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TABLE 5. ACTUAL AND EXPECTED {(x) VALUES DERIVED FROM THE DOUBLE
LOG MODEL AND THE BRASS MODEL

Botswana 80-81 Male Japan 84 Female
Double Double
Log Brass-Mex Log Brass-E&W

Age Actual Model Model Actual  Model Model

1 92402 92402  .90803 99471 99471 99342
5 86132  .88973  .86132 99280 99341  .99230
10 83603  .86452  .84867 99200 99205 99165
15 82603 84225  .84097 99137 99053  .99099
20 .80918 .81991 .82863 99017 98871 98993
25 78660 79623  .80966 98844 98647  .98879
30 76362 77032 .78580 98630 98366  .98730
35 73997 74136 75689 98354 98005 98462
40 71371 70848 72177 97949 97532  .98210
45 68337 67064  .67999 97339 96897  .97695
50 64607 62661  .63049 96407 96024  .96796
55 .59844 57488  .57007 95020 94785 95297
60 53808 51368  .49712 93013 92965  .92861
65 45830 44108 41149 89898 90175  .89102
70 36130 35546 31782 84794 85682  .83456
75 24741 25694 22345 76303 78024 74827
80 13529 15106 .13905 62155  .64247 61810
85 05274 05622  .07150 42027 39417 43436

The standard table for Botswana is Mexico 70 male (Brass-Mex). For Japan it is England and
Wales 82-84 female (Brass-E&W).

This model can be used to generate the values of the survivorship function
given only the infant mortality, 1-#(1), and the region in which the country is
located. For example, if £(1) is assigned a value of say, .97677 for females in
a country in the West region, one can interpolate to find values of "m" and
"n" from the bottom half of Table 1. Since .97677 is halfway between the
£(1) values for female West levels 21 and 23, the technique of linear
interpolation then produces estimates of the parameters "m" and "n" as
m=.155 and n=1.747. To find £(20), for instance, one simply substitutes the
values of (1), m, and n along with the value of 100 for o and 20 for x into
equation (16). The solution for £(20) in this illustration is .94719. In like
manner, one can generate values of the survivorship function for other ages.
From the £(x) values, other life table functions can be determined. However,
the application of the model is by no means restricted to the choice of one of
the regions of Coale and Demeny's (1983) model tables. As may be seen
from Tables 1 and 2, a region corresponds to specific sequences of values of
"m" and "n" for each sex. From a theoretical point of view, an infinite
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number of such sequences can be created subject to the boundary conditions
(12) and (13), each capable of generating a separate series of life tables.

Concluding Remarks i

The double log model produces consistent life table functions from a given or
estimated value(s) of 4(x) at age one. With our sample of national life tables,
the double log model produced expected values of £(x) as close to the
observed values as the Brass model. The regressions of actual 4(x) on
expected £(x) using the model life tables also demonstrated the strength of
the double log model. The great advantage of the double log model over the
commonly used Brass model is that its use does not require the selection of a

- comdard table. HELL S AL s ToL UL UL M L su e e

TABLE 6. ACTUAL AND EXPECTED £(x) VALUES FROM THE DOUBLE LOG
MODEL FOR SELECTED FEMALE. WEST LIFE TABLES.

e(0) = 40 &(0) =60 ¢(0) =80

age act. exp. act, exp. act. €xp.

1| .82178  .82178 | .92884 92884 | .99555  .99555
5| 72459 76239 | .89772 90842 | .99522  .99096
10 | .70001 72288 | .88778  .89283 | .99499  .98694
15 | .68147  .69033 | .88013  .87848 | .99478  .98308
20 | 65758  .65953 | .86906  .86362 | .99440 .97896
25 | 62856  .62859 | .85460  .84747 | 99384 97431
30 | 59737 .59646 | .83819  .82941 | .99306  .96893
35 | .56387 .56239 | .81969  .80881 | .99198  .96251
40 | .52894 52574 | 79867 78493 | 99022  .95470
45 | 49323 48589 | .77437 75685 | .98697  .94500
50 | 45631 44225 | .74489 72337 | .98036  .93266
55 | 41175 39422 | .70574 68289 | .96904 91661
60 | .35989  .34130 | .65424 63326 | .94948  .89512
65 | 29435 28322 | .58249 57160 | 91660  .86544
70 | 22191 22031 | 48711 49421 | .85479  .82285
“T75 | 14442 15427 | 36469 39683 | .74670 . .75895
80 | .07544 - .08955 | .22853 27674 | .57547  .65813
85 | .02811 .03540 | .10829  .14108 | .36683  .49194
90 | .00603  .00520 | .03250 .02915 | .16927  .22841
95 [ .00055  .00001 | .00467  .00006 | .04484  .00621

Interesting common patterns were revealed when studying the graphs of the
actual and expected £(x) values for both sexes. The patterns are evident in
the actual and expected values of £(x) presented for three female West life
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tables in Figure 2 and Table 6. Since both the given and the expected 4(x)
functions are monotonic nonincreasing functions of age as they should be,
they are expected to crisscross unless the fit is perfect. In fact, crisscrossing
is the next best thing after the ideal case of a perfect fit which cannot be
expected from any model. Crisscrossing is the only way the desirable
condition of nearly identical grand totals of the two distributions can be met.

FIGURE 2. ACTUAL AND EXPECTED {(x) VALUES FOR SELECTED FEMALE WEST
MODEL LIFE TABLES.

1.2

0.8
1(x) 06
0.4

0.2

1 10 20 30 40 50 60 70 80 90

age

— actual values -~ expected values

For both males and females, the crisscrossing phenomenon begins with
producing overestimates at younger ages in the high mortality example. The
magnitude of the overestimate decreases with declining mortality and finally,
the pattern is reversed at the other extreme. It may be mentioned at this point
that we are comparing our model tables with another set of tables which are
also model tables themselves. The adequacy of the latter tables was never
tested by comparing those with the life tables selected to generate them. As a
matter of fact, for these regional life tables, no mechanism seems to exist
which can be used to identify a model counterpart of an actual life table.
Those tables, like ours, meet certain basic requirements such as decreasing
mortality from birth to a certain age, increasing mortality past that age,
monotonic nonincreasing nature of the 4(x) function. These conditions can
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be met by an innumerable number of life tables, and our own double
logarithmic model is also capable of producing an infinite number of such
tables. From that perspective, the regional tables are somewhat limited with
only four regions.

As noted in the previous section, the double logarithmic model tables, like
the regional tables, have two dimensions. It is possible, that future
investigations along this line, may further improve upon the goodness of fit
by developing another method for defining the dimensions, or by adding an
additional dimension to it. The latter approach will necessitate the inclusion
of another parameter in the model, which from the point of view of
simplicity and parsimony, should only be considered as the last alternative.

Paper presented at Session 35 - The Foundations of Demographic Models:
Theories or Empirical Exercises? - of the IUSSP XXIInd General Population
Conference, August 24 to September 1, 1993
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