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A GENERAL CONDITION FOR STABILITY
IN DEMOGRAPHIC PROCESSES*

Nathan Keyfitz
Harvard University, Cambridge, Massachusetts, U.S.A.

Résumé—On utilise la théorie graphique pour examiner en détail la propriété de la stabilité des
déplacement démographiques.

Abstract—Graph theory is employed to investigate the stability property of population transfer.

Population analysis involves transfers, transitions, or transformations of individuals
among categories or states. The common population projection is transfer among age
groups (including as a transfer the production of children by adults in the reproductive
ages); migration is transfer among countries or among subdivisions of a country; school
population is transferred among types of school, among grades within schools, and ul-
timately is transformed into graduates with various formal qualifications; in mortality
analysis the living population is transformed into the dead via the several statistically
recognized causes; labour force analysts study transfers among the school and working pop-
ulations, and within the working population among the several occupations.

In any of these or other cases, if the transfers take place at fixed rates they can be
represented in three equivalent ways: (a) as a set of linear equations, (b) as a matrix, and
- (c) as a graph. Each of the three ways has its usefulness. For a population in which age
only is recognized and the transfers are those of birth and death, the set of linear equations
is the ordinary population projection. Less convenient for numerical work than linear
equations because it includes many multiplications by zero, the matrix and its powers
show the effect on later times and later generations of an individual initially at a given age.
The graph is poor for computing, and in the usual simplification replaces all positive
elements of the matrix by unity, but it permits an easy investigation of the stability proper-
ty. It is this last that is our subject here.

The stability property is of interest because it tells us the result of indefinite repetition of
a given set of transfers, and helps thereby the study of the present condition. If the net
movement to British Columbia during a decade is (say) 0.02 of the population of the
remainder of Canada, and this along with natural increase is the whole model, then stabili-
ty will not occur except in the trivial sense that the whole of the remainder of Canada will
be emptied into British Columbia. If the model is slightly complicated by the information
that the net of 0.02 is the resultant of 0.025 of the population of the rest of Canada moving
into British Columbia and 0.05 of the population of British Columbia moving out, then the
_projection is altogether changed, and continuance of the process will result in a steady state
with a calculable fixed ratio of population between British Columbia and the rest of
Canada.

Such a simple case will be convenient for purposes of exposition, and the results will be
transferable to models recognizing age, region, rural and urban, school attendance and
grade, labour force and occupation, or any combination of these and other characteristics.
Two theorems will be presented, easy to apply though difficult to prove. Proofs will be
beyond the scope of this paper, as on the farther side of the division of labour between
demographers and mathematicians. '

"*An invited paper.
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A Two-Subgroup Model

Within a population in which there exist statistically recognizable sub-
populations—regions of a country, social classes, educational levels—we consider not
changes within, but transfers among, such groupings. Given the rate of growth in each sub-
population and the rates of transfer among subpopulations, changes can be described by a
set of differential or difference equations. For a simple special case, suppose two sub-
populations p and g, where p, and q: denote the sizes of the two subpopulations at time ¢.
If growth of the subpopulations is accompanied by migration in both directions then
change in the system can be described by

D1 = rip + g,
| M
g1 = I\pa + rag.
In general, ri; > 0 is the net rate of growth of the first subpopulation, i.e., the rate of in-
crease after outward migration has been accounted for; ri2 > 0 is the fraction of the second
population transferring into the first, and similarly for r»; and ru.

'Equation (1) is identical to the matrix equation
P+l rn D
= , e)
qi+1 ra I qt
which can be compactly written
__fm = 5!_’«, 3
where P is the population vector at time # R is the matrix of growth and transfer
rates—referred to indifferently as a transition or a projection matrix—and P is the pop-
ulation vector at time ¢ + 1. If the rates ry1, 721, 112, and r; are fixed over time, then (3)
recurrently determines the population at any arbitrary time subsequent to z. The population
at time ¢ + n equals that at time ¢ successively operated on by R:
Puw=R(...(R(RP))...)=RP. “)
If riz = ra = 0, and r11 # rz, then it is readily shown that the two subpopulations
never come into a fixed ratio to one another, but the subgroup with the larger rate keeps
growing relative to the one with the lower rate. But if ri» and ry; are positive, then no
matter how different r;; and r;; may be, the two subpopulations will ultimately
come to increase at the same rate. This stability of the ratio of the one population to the
other will of course occur more quickly if ri» and r,; are large in relation to the
difference between r11 and rz.

More Complex Cases and the Use of Graphs

In the preceding example we have been dealing with two subpopulations, a case simple
enough that we could demonstrate stability or the lack of it by easy matrix multiplication.
Problems arise involving scores, even thousands, of subgroups within a population; the
matrices become very large and the conditions for stability too complex for the problem to
be tackled as was done above. Fortunately, two general rules suffice to determine which
projection matrices will result in stability, rules expressed in terms of graphs.

A graph consists of vertices, corresponding to the states or subgroups of a population,
and edges, representing transitions among states, regions, etc. Formally the vertices and -
edges are not defined except as points and the lines joining them. The edges will be
directed, the direction indicated by an arrow (Malkevitch and Meyer, 1974; Berge, 1963).

An exact correspondence can be drawn between a graph and a matrix containing zeros
and ones. Consider the 3 X 3 matrix 4 and an initial population vector P,
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1 0 1 y4
A=11 0 O0f,and P= | p:
0 1 0 D3

The positive entry equal to one in position a3 of 4 enters the matrix multiplication 4P by
multiplying ps, and the result is included in the first element of 4 P. That is, a positiv; e~ntry
in a3 represents a transition from state 3 in the initial vector to state 1 in the final vector.
The matrix 4 provides for transitions from state 1 to itself, from 3 to 1, from 1 to 2, and
from 2 to 3. In general, a positive entry in position a; (row i, column j) represents a transi-
tion from state j to state i; if i = j, it represents a transition from state i to itself. On the
other hand, a zero entry in a; means that no transition is permitted from state j to state i.

Denoting states by vertices and possible transitions by arrows, we see that the matrix A4 is
equivalent to the graph of Fig. 1.

@[\

FIGURE 1. GRAPH CORRESPONDING TO MATRIX A

Irreducibility or Connectivity

A necessary condition for ultimate stability is that the projection matrix and cor-
responding graph be irreducible. A matrix and its corresponding graph are irreducible if
passage is possible from any vertex to any other vertex, with or without going through
further vertices on the way; a graph not satisfying this condition is reducible. Thus the
graph in Fig. 1 is irreducible. A graph is reducible, for instance, if it divides into separate
noncommunicating blocks as in Fig. 2a, or if it has even one point out of which no passage
is provided, as vertex D in Fig. 2b. Anyone who prefers can replace the word “irreducible”
by “connected,” the former being more often used in reference to matrices, the latter in
reference to graphs. e

)

FIGURE 2a FIGURE 2b
REDUCIBLE GRAPHS

(©
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Irreducibility of a matrix is a necessary but not sufficient condition for stability to oc-
cur at high powers of the matrix. What is further required is that the matrix fill up with
positive elements, so that it contains no zeros as it goes to high powers. Consider the
matrix

0 0 I
c= |1 o
0 1 0

and the corresponding irreducible graph in Fig. 3:

FIGURE 3. A CYCLIC GRAPH C

C’ is the identity matrix, and thus C* is the same as C. Though each cell becomes unity at
one time or another, the matrix at no time fills up with positive numbers; instead, it goes
through endless cylces. Repeated multiplication of a population vector by C will never
produce stable ratios.

Primitivity _
By permitting one element of C to communicate with itself we destroy the cyclic
character of C. For example,

1 0 1}
4= |1 0 o
0 1 0

is not cyclic. In particular, ég contains only positive numbers, and this special type of
irreducible matrix is called primitive. In terms of an arbitrary matrix 4, primitivity means
that some power of 4, say ﬁiN, can be found that has only positive elements. For the cor-
responding graph primitivity implies that a number N can be found such that one can go
from any vertex of the graph to any other vertex in exactly N moves.

Irreducibility requires only that every point be reachable from every other point, not
necessarily in the same number of moves; in the irreducible graph C of Fig. 3 one can go
from 1 to 2 in one move but not in two, and from 2 to ! in two moves but not in one.
Primitivity requires the existence of a number N such that a route of length N on the graph
can be found between any two points, a special case of irreducibility. We will accept
without proof the fact that primitivity of a non-negative matrix such as a projection matrix
is a sufficient condition for stability (Perron, 1907; Frobenius, 1912; Parlett, 1970).

Like irreducibility primitivity may be recognized from a graph. A circuit of a graph is
a unidirectional closed subset of vertices and directed edges whose length is equal to the
number of edges of the subset. Thus, if vertex A connects with itself it forms a circuit of
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length one, whereas the circuit in Fig. 3 is of length three. A fundamental theorem ex-
presses primitivity in terms of the lengths of circuits in a graph: an irreducible graph, or its
matrix, is primitive if and only if it has at least two circuits whose lengths £+ and £, are
relatively prime. (Two numbers are relatively prime if they have no common divisor greater
than one.)

This theorem has essentially the same content as a proposition in number theory:
Given integers £, and Z, that are relatively prime, positive integers @ and b can be found
to make the weighted sum a£, + b4, equal to any arbitrarily chosen integer greater than
some integer I. This proposition from number theory implies that the existence of two cir-
cuits of relatively prime lengths .£: and £, guarantees that the graph will be primitive, and

that the corresponding matrix will fill up with positive numbers at and beyond some power
N.

Application to Birth and Death

Consider the above theorem in terms of the survival and aging process. Aging cor-
responds to a graph that goes from the first to the second, to the third, to the
fourth, . . ., age groups (Fig. 4). This graph is neither irreducible nor primitive; everyone

)

FIGURE 4. AGING PROCESS

drifts to the end of life. Suppose a provision for birth in the sixth age group, and hence one
circuvivtl(liig‘ 5). Since the seventh and eighth age groups lead nowhere we drop these ages

and the graph up to age 6 becomes irreducible. However, since it has only one circuit, the
graph is not yet primitive. In order to obtain primitivity we need at least two age groups of
childbearing, and we must be careful to choose these age groups relatively prime, e.g., the
third and sixth ages would not suffice. Allowing for fertility in the fifth and sixth ages the

graph becomes that shown in Figure 6 and now the graph and the corresponding matrix
are primitive.

FIGURE 6. AGING WITH TWO AGES OF CHILDBEARING
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To sum up, an irreducible matrix that is also primitive makes any vector that it is
premultiplying come to a fixed set of ratios, i.e., a stable population, and one that does not
depend on the original composition of the population. This ergodic property, the tendency
of a vector or population to forget its past, is easily illustrated by examples in which the
same matrix was applied repeatedly. An analogous property of a series of different matrices
was conjectured by Coale: that two different vectors become similar to one another when

they are acted on by the same series of matrices. This important theorem was proven by

Lopez (1961). Note that the considerations of this article prove ergodicity with changing
matrices, provided the same elements are always non-zero. Lopez’s proof avoids this and
other restrictions.

The results of the present section apply wherever we seek to understand a current
movement by asking what would happen if it continued indefinitely into the future. Any
linear projection with fixed transitions, recognizing ages, regions, occupations, school
grades, etc., or any combination of these, may be treated in the same way. Using the
methods of this section, we might study, for example, migration between California and the
rest of the United States over a decade, as did Rogers (1968), and ask what would be the
stable condition if both in-migration and out-migration continued indefinitely; we might
study movement through the educational system (Stone, 1966); through the occupation
structure (Prais, 1955; Tabah, 1968); and many others. In all such cases the transition
process can be represented as a matrix, and the stability properties of the matrix studied by
means of a graph.

Strong ergodicity is the approach to stability with the repeated action on a given vec-
tor of a given (primitive) matrix. Of more practical application is weak ergodicity, the
result of the action of a given sequence of different matrices. When two different initial age
distributions, say P, and P4, are both acted on by the sequence of matrices Mo,
M,, ... M, then weak ergodicity means that they come to resemble one another. In sym-
bols, if n is large enough, the equation

M, ... MM \MoP, = M, ... MoM\MoP§

represents weak ergodicity. The past is forgotten in the sense that the difference between Py
and P{§ disappears in the products, provided n is large. The vectors resulting from the mul-
tiplication are purely a function of the sequence of matrices, and not of the initial vector.
This is a major generalization of strong ergodicity, which may be represented as M"P, =
M"Pi, n large.

David McFarland suggests that weak ergodicity can be proved in terms of strong. He
would start by defining the intersection of two or more graphs as that graph which has
only those points and lines common to all of the graphs being intersected. The points are
the ages that are recognized, and we suppose that all matrices of the sequence are of the
same size and refer to the same age groups. The lines are determined by the non-zero
elements in the matrix; suppose that all of the matrices have positive fertility in the fourth
and fifth age groups, or some other pair of ages prime to one another as long as it is the
same for all the matrices. Other non-zero elements, either the same from matrix to matrix
or differing, cannot interfere with ergodicity, so the existence of two common relatively
prime ages of positive fertility is a sufficient condition. More generally, the primitivity of
the intersection matrix of the sequence Mo, M, ... M, is sufficient for weak ergodicity.

Strong ergodicity has the convenience that the proportional distribution of the resul-
tant product vector, M"P,, is a simple function of the elements of M as n becomes large.
Where a one-sex age distribution is under discussion, this is the stable age distribution of
much importance in demography. In the same way the product vector My ... MiMyP, is
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purely a function of the Ms, and not of Py, but no simple expression in terms of the
elements of the Ms can be hoped for.
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