Effects of pioglitazone on erectile dysfunction in sildenafil poor-responders: A randomized, controlled study

Babak Gholamine, Massoumeh Shafiei, Manijeh Motavallian & Massoud Mahmoudian

Department of Pharmacology & Razi Institute for Drug Research, School of Medicine, Iran University of Medical Sciences.

Received July 3, 2007; Revised October 29, 2007; Accepted January 23, 2008; Published January 30, 2008.

ABSTRACT

Purpose. The effects of pioglitazone on sildenafil responsiveness in men with erectile dysfunction (ED) and a history of poor response to sildenafil were assessed. Methods. In a double-blinded study, 38 men aged 47 ± 1.5 years with moderate-to-severe ED and poor response to sildenafil were randomly assigned to take a premedication of pioglitazone 30 mg (n=19) or placebo (n=19) once daily for 9 weeks along with on-demand use of sildenafil during the last month of pioglitazone-treatment. Erectile function (EF) scores, assessed by EF domain of International Index of Erectile Function (IIEF), along with responses to Global Assessment Questions (GAQs) were major outcome measures. Serum levels of total testosterone (T), dehydroepiandrosterone sulfate (DHEAS), glucose, lipid profile and liver function test were minor outcome measures. Results. Pioglitazone significantly improved major outcome measures compared with placebo. The decrease from baseline of total cholesterol level was more in pioglitazone- than in placebo-treated groups. In 84% (32 out of 38) of the sildenafil poor-responders, at least one of the associated risk factors of ED was found. There was undiagnosed hypercholesterolemia in 34% of the subjects. Serum levels of T, DHEAS, glucose and other parameters remained unchanged in both groups. The intervention was well tolerated. Conclusions. Pioglitazone increased sildenafil response to improve ED of men with prior sildenafil failure and seems to be safe based on the present preliminary study. This improvement is likely regardless of fasting glucose and sex hormones levels.

INTRODUCTION

Erectile dysfunction (ED) is a prevalent and chronic disorder in men over 40 years old (1, 2) and its incidence has increased because of limited physical activity and high calorie intake associated with modern lifestyle (3). Common in risk factors, ED is often observed in patients with cardiovascular co-morbidities and precedes coronary artery disease (4, 5).

In penile erection, nitric oxide (NO)-activated soluble guanylyl cyclase synthesizes cyclic guanosine monophosphate (cGMP) which results in relaxation of arterial and trabecular smooth muscles. Sildenafil augments these smooth muscle relaxations by inhibition of phosphodiesterase-5 (PDE-5), the enzyme that breakdowns cGMP.

Even though sildenafil has been extensively prescribed as the first line drug in treatment of ED for years, there are reports of sildenafil discontinuation mainly due to the lack of effectiveness in more than 70% of men who stop sildenafil usage (6). Even after optimized instruction for sildenafil usage (7) or switching to more potent drugs of PDE-5 inhibitors family, with either on-demand or daily usage, the success rate of intercourse attempts could not reach more than 50% (8, 9). Apart from oral treatments for ED, alternative choices such as intracavernous injectable drugs, penile prostheses and vacuum devices have disadvantages including cost, invasiveness and rather artificial sexual relationship.
Conclusively, for a considerable percentage of men with ED who are seeking new treatment modalities, planning new therapeutic measures is necessary.

Because of ambiguities and controversies on common findings in sildenafil non-responders, there is no definite clinical criteria to predict sildenafil failure (10, 11), although men with diabetic and neurogenic ED have a higher dissatisfaction rate (6). Inefficacy of sildenafil in ED has been shown by a few studies from genetical, physiological, histopathological and hemodynamic aspects. It is suggested that endothelial nitric oxide synthase (NOS 3) and angiotensin converting enzyme (ACE) genotypes influence the erectile response to sildenafil (12). Severe vascular lesions and atrophy of smooth muscle cells (SMCs) were observed in sildenafil nonresponders (10). It has been shown that response to sildenafil could not be predicted by endothelial and autonomic systemic function tests, but in diabetic men it appears to be related to the initial degree of ED (13). Doppler ultrasonography studies of penile vessels showed poor rigidity response to intracavernous injection of vasodilators, penile arterial insufficiency and veno-occlusive dysfunction (14, 15). Based on some associated findings in this complex and multi-factorial disorder, drugs that maintain the structure and function of penile vasculature by preventing endothelial and SMCs dysfunction and damage, may improve response to sildenafil.

In optimizing response to sildenafil, the candidate drug must have a unique safety profile: 1- high safety especially in geriatrics as the leading age group of ED; 2- few interactions with drugs used for co-morbid diseases and with sildenafil especially for the risk of acute hemodynamic-induced events. Preliminary studies have shown improved response to sildenafil by quinapril and atorvastatin (16, 17). Peroxisome proliferator-activated receptor γ ligands (PPARγ), including pioglitazone, demonstrated beneficial effects on ED predisposing factors such as endothelial dysfunction, oxidative stress, metabolic disorders, atherosclerosis and inflammation (18, 19). Promisingly, pioglitazone has already been shown to prevent veno-occlusive ED in diabetic rats by a mechanism independent of glycaemic control (20). Therefore, the present study was conducted to examine whether premedication with pioglitazone is devoid of any adverse drug events and can improve responsiveness to sildenafil in men with ED.

METHODS

Subjects

Study population were 38 men (age: 35-70) with ED ranging from moderate to severe as defined by International Index of Erectile Function (IIEF) questionnaire (21, 22). They had to have a stable sexual relationship and inadequate response to sildenafil citrate. Poor response to sildenafil was defined as: having the experience of at least four unsuccessful intercourse attempts in nonsuccessive occasions after being oriented to use the highest tolerable and therapeutic dose (≤100 mg) with respect to timing relative to meals, use of concomitant medications and adequate sexual stimulation. Subjects were excluded from participation in respect to any of the followings: 1- existing disease: neuropathic (diabetic/nondiabetic), endocrinopathic and psychogenic ED, anatomical penile abnormality, heart failure (class II - IV), serum alanine aminotransferase (ALT) > two fold the upper limit of normal values, unstable cardiovascular hemodynamic (e.g. coronary syndrome, hypotension); 2- medications: substance abuse, nitrate and steroid regimens; 3- assessment tool (IIEF questionnaire) limitations: low sexual desire and EF score <5, sexual dysfunction in partner, lack of a stable heterosexual relationship (21, 22). The study was conducted in accordance and conformation with the Declaration of Helsinki. The protocol was reviewed and approved by the ethical committee board of Razi Institute for Drug Research, Iran University of Medical Sciences.

Study design

This study was designed as a prospective, randomized, placebo-controlled, double-blinded trial. Subjects enrolled voluntarily following an announcement in the Iran University of Medical Sciences. The same physician carried out all the study interviews and examinations. Signed written informed consent was obtained from each subject after full oral and written explanation of the purpose, nature, duration and risk of all procedures.
for the patients. All subjects were clinically assessed based on a medical/sexual history and physical examination including measurements of body mass index (BMI) and waist to hip ratio (W/H). Following a 4 weeks run-in period for sildenafil trial, baseline self-reported questionnaires and blood tests were obtained from all patients. Eligible patients were assigned to receive either pioglitazone 30 mg once daily or matching placebo according to a randomization table for nine weeks. All patients were requested to have intercourse at least once weekly in the last month of pioglitazone treatment along with on-demand use of sildenafil. The laboratory staffs involved in the intervention were not aware of the group assignment. Medical visits were scheduled at 4-weeks intervals for 12 weeks to check possible adverse events, lifestyle changes and patients’ compliance. For the second time, at the end of intervention period, self-completed questionnaires and blood tests were obtained from the patients. BMI > 28.7 kg/m², diabetes, hypercholesterolemia, hypertension and smoking were regarded as associated risk factors of ED (2-5, 27).

Erectile dysfunction assessment

In this study, a specific version of IIEF questionnaire, i.e. erectile function (EF) domain, was used as the assessment instrument for measurement of erectile function and interventional efficacy (21). As the gold standard instrument, the IIEF is an extensively used and highly validated instrument for the evaluation of sexual function in men especially in clinical trials(21-24). EF domain is a 6 items version of IIEF questionnaire that grades erectile function by responses to six specific questions of IIEF questionnaire; Question 1-5 are related to EF segment of IIEF and the last question concerns erectile confidence, i.e., question 15 IIEF (25, 26). The scores of EF domain of IIEF were clinically interpreted as: no ED >26, mild ED = 22 to 25, mild-to-moderate ED=17 to 21, moderate ED = 11 to16 and severe ED <10 (25).

Besides the use of EF domain of IIEF for definition of functional severity of ED for inclusion (IIEF EF domain <17), it is also used for measurement of the impact size of pioglitazone on sildenafil efficacy in erectile function by comparing the secondary IIEF EF domain scores with the baseline scores (22). In addition, as qualitative measures, two questions of global assessment questions(GAQs) was asked from the patients at study end point (22):1- “Has the treatment you have been taking during this study improved your erections?” (GAQ Q1) and ‘‘If yes, 2- Has the treatment improved your ability to engage in sexual activity?’(GAQ Q2).

Laboratory assessment

Laboratory blood tests were done for all subjects at the beginning and at the end of study. Serum samples were obtained after an overnight fasting and immediately processed and kept frozen at -20°C until the assay was carried out. Serum level of glucose, total cholesterol (TC), high density lipoprotein cholesterol (HDL), low density lipoprotein (LDL), triglycerides (TG), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Serum glucose was measured by glucose-oxidase method. Serum lipid levels, ALT and AST were assayed directly by standard enzymatic methods. Total testosterone (T) and Dehydroepiandrosterone sulfate (DHEAs) were measured with available radioimmunologic kits from Biosource, Belgium (reference limit: 1.34-6.25 ng/ml) and from Immunotech, France (reference limit: 133-441 mcg/dl). Supported by external quality control, lab analysis was done in Comprehensive Hemophilia Care Center (CHCC) of Iran, a member of UK National External Quality Assessment Service (UKNEQAS).

Statistical analysis

Erectile function scores was regarded as the major outcome measure of present study and values of laboratory biomarkers were considered to be the minor outcome measures. Continuous variable data were analyzed by two-tailed Student’s unpaired t-test to assess inter-group differences and paired t-test to assess the longitudinal differences in each group. For discrete variables, chi-square test was used to assess differences in proportions of incidence between the two groups. Correlations between changes in variables were assessed with Pearson’s correlation coefficient. Data were expressed as mean ± SEM. In all tests, p < 0.05 (2-tailed) was considered to be statistically significant.
RESULTS

Of 45 men who were re-challenged for sildenafil, 40 men (88%) were true poor-/non-responders and entered the study. Thirty eight men (95 %) completed the study. Two subjects dropped out, one in placebo group due to urgent coronary bypass surgery and one in drug group for a job offer in another city. The prevalence of associated risk factors was similar in both groups. 84% of patients (32 out of 38) had at least one risk factor and 47% of patients (18 out of 38) had two risk factors. Regarding a threshold of 195 mg/dl for total cholesterol, one third of all participants (13 out of 38) were unaware of their hypercholestrolemia until their first blood test in this study. Baseline characteristics and measured data of subjects are shown in Table 1 & 2.

There were no statistically significant differences between the drug and control groups with respect to baseline characteristics, EF domain scores and laboratory parameters except for TG level, which were higher in placebo group (p< 0.02). The latter was probably influenced by undiagnosed familial hypertriglyceridemia (TG = 599 mg/dl) in one patient.

Erectile function profile

Erectile function score improved in the pioglitazone group, but remained stable in the placebo group. The mean EF domain of IIEF score was significantly increased from 13.32 ± 0.60 to 17.63 ± 1.05 in pioglitazone group compared to the placebo group in which the EF score changed from 14.11 ± 0.56 to 14.32 ± 0.73,(p < 0.02), Figure-1. Consequently, at the end point of intervention, the mean changes of IIEF EF domain score (∆EF) from baseline was significantly higher in the pioglitazone group compared to the mean changes in placebo group (4.32 ± 0.7 vs. 0.21 ± 0.44, p< 0.001).

In drug group, compared with placebo, the mean response to every six questions of EF domain improved and this improvement was significant (p <0.03) with respect to erection frequency (IIEF Q1), erection maintenance frequency (IIEF Q4) and erection maintenance ability (IIEF Q5). According to clinical classification of IIEF EF domain scores, stage of ED in the pioglitazone group raised from moderate ED range level to the mild-to-moderate range level. At 9 weeks, the proportion of positive responses to the GAQs was significantly greater in patients receiving pioglitazone (11/19) than in patients receiving placebo (2/19) Table- 3.

In pioglitazone group, the difference between the mean change of EF scores in diabetics and nondiabetics (3.16 ±1.27 vs 4.84 ± 0.84, respectively) was not significant. Also, in diabetics of drug and control groups, the mean changes of EF scores (3.16 ± 1.27 vs - 0.25 ± 0.25, respectively) were not significantly different.

Table 1. Baseline characteristics and prevalence of erectile dysfunction risk factors in study subjects.

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Total</th>
<th>Placebo</th>
<th>Pioglitazone</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>38</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>47 ± 1.45</td>
<td>45 ± 1.67</td>
<td>49 ± 2.34</td>
</tr>
<tr>
<td>BMI > 28.7 (Kg/m²)</td>
<td>16 (42%)</td>
<td>8 (42%)</td>
<td>8 (42%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>10 (26%)</td>
<td>4 (21%)</td>
<td>6 (32%)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>8 (21%)</td>
<td>4 (21%)</td>
<td>4 (21%)</td>
</tr>
<tr>
<td>Hypercholestrolemia</td>
<td>13 (34%)</td>
<td>6 (32%)</td>
<td>7 (37%)</td>
</tr>
<tr>
<td>Smoking</td>
<td>6 (16%)</td>
<td>4 (21%)</td>
<td>2 (11%)</td>
</tr>
</tbody>
</table>
Table 2. Measured variables and IIEF EF domain scores of study subjects at baseline and endpoint.

<table>
<thead>
<tr>
<th></th>
<th>Placebo (n=19)</th>
<th>Pioglitazone (n=19)</th>
<th>p1</th>
<th>p2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Week 0</td>
<td>Week 9</td>
<td>Week 0</td>
<td>Week 9</td>
</tr>
<tr>
<td>BMI, Kg/m²</td>
<td>28.79 ± 1.32</td>
<td>28.70 ± 1.33</td>
<td>28.60 ± 1.22</td>
<td>28.68 ± 1.20</td>
</tr>
<tr>
<td>W/H</td>
<td>0.97 ± 0.01</td>
<td>0.971 ± 0.01</td>
<td>0.96 ± 0.01</td>
<td>0.95 ± 0.01</td>
</tr>
<tr>
<td>SBP, mmHg</td>
<td>127.37 ± 3.573</td>
<td>126.58 ± 3.86</td>
<td>129.71 ± 3.84</td>
<td>127.94 ± 3.61</td>
</tr>
<tr>
<td>DBP, mmHg</td>
<td>81.05 ± 2.28</td>
<td>80 ± 2.16</td>
<td>83.82 ± 2.36</td>
<td>82.35 ± 2.33</td>
</tr>
<tr>
<td>FBS, mg/dL</td>
<td>110.90 ± 7.53</td>
<td>104.58 ± 3.98</td>
<td>127.26 ± 13.55</td>
<td>115.32 ± 12.02</td>
</tr>
<tr>
<td>ΔFBS, mg/dL</td>
<td>-6.32 ± 5.905</td>
<td>-11.95 ± 6.90</td>
<td>0.539</td>
<td></td>
</tr>
<tr>
<td>Cholesterol, mg/dL</td>
<td>197.34 ± 8.94</td>
<td>200.90 ± 9.52</td>
<td>198 ± 8.38</td>
<td>183.47 ± 7.80</td>
</tr>
<tr>
<td>ΔCholesterol, mg/dL</td>
<td>3.56 ± 6.35</td>
<td>-14.53 ± 4.03</td>
<td>0.022*</td>
<td></td>
</tr>
<tr>
<td>LDL mg/dL</td>
<td>102.13 ± 5.89</td>
<td>99.70 ± 4.70</td>
<td>106.63 ± 5.31</td>
<td>97.91 ± 5.34</td>
</tr>
<tr>
<td>ΔLDL, mg/dL</td>
<td>-2.43 ± 4.49</td>
<td>-8.721 ± 2.66</td>
<td>0.236</td>
<td></td>
</tr>
<tr>
<td>HDL, mg/dL</td>
<td>34.67 ± 1.99</td>
<td>35.33 ± 1.98</td>
<td>37.98 ± 2.36</td>
<td>38.86 ± 2.27</td>
</tr>
<tr>
<td>ΔHDL mg/dL</td>
<td>0.65 ± 1.34</td>
<td>0.88 ± 0.98</td>
<td>0.893</td>
<td></td>
</tr>
<tr>
<td>Triglycerides mg/dL</td>
<td>215.21 ± 30.19</td>
<td>234.11±38.85</td>
<td>130.368±14.702</td>
<td>128.789±18.28</td>
</tr>
<tr>
<td>Δtriglycerides mg/dL</td>
<td>18.90 ± 22.16</td>
<td>-1.58 ± 10.88</td>
<td>0.412</td>
<td></td>
</tr>
<tr>
<td>AST mg/dL</td>
<td>24.63 ± 2.11</td>
<td>24.12 ± 1.28</td>
<td>21.37 ± 1.56</td>
<td>21.95 ± 1.24</td>
</tr>
<tr>
<td>ΔAST mg/dL</td>
<td>-0.53 ± 1.40</td>
<td>0.58 ± 1.248</td>
<td>0.559</td>
<td></td>
</tr>
<tr>
<td>ALT, mg/dL</td>
<td>33.68 ± 4.24</td>
<td>36.32 ± 3.16</td>
<td>26.37 ± 3.58</td>
<td>28.79 ± 2.31</td>
</tr>
<tr>
<td>ΔALT, mg/dL</td>
<td>2.63 ± 2.74</td>
<td>2.42 ± 2.44</td>
<td>0.954</td>
<td></td>
</tr>
<tr>
<td>Testosterone, ng/mL</td>
<td>3.66 ± 0.33</td>
<td>3.55 ± 0.36</td>
<td>4.38 ± 0.23</td>
<td>4.257 ± 0.25</td>
</tr>
<tr>
<td>ΔTestosterone, ng/ml</td>
<td>-0.107 ± 0.203</td>
<td>-0.118 ± 0.226</td>
<td>0.973</td>
<td></td>
</tr>
<tr>
<td>DHEAS, mcg/dL</td>
<td>162.71 ± 15.08</td>
<td>156.21±16.44</td>
<td>124.40 ± 13.00</td>
<td>119.12 ± 11.16</td>
</tr>
<tr>
<td>ΔDHEAS, mcg/dL</td>
<td>-6.499 ± 8.363</td>
<td>-5.284 ± 6.895</td>
<td>0.911</td>
<td></td>
</tr>
<tr>
<td>IIEF EF Domain</td>
<td>14.11 ± 0.56</td>
<td>14.32 ± 0.73</td>
<td>13.32 ± 0.60</td>
<td>17.63 ± 1.05</td>
</tr>
<tr>
<td>ΔIIEF EF Domain</td>
<td>0.21 ± 0.44</td>
<td>4.32 ± 0.71</td>
<td><0.001*</td>
<td></td>
</tr>
</tbody>
</table>

Data are means ± SEM; Δ, p1, values for baseline comparison between placebo & pioglitazone; p2, values for end point comparison between placebo & pioglitazone; * Significant different from placebo.

Laboratory parameters

At the endpoint, a significant decrease in mean change of total cholesterol concentration was observed in pioglitazone group compared to placebo group (-14.53 ± 4.03 vs. 3.56 ± 6.35, P = 0.022). Compared to the baseline, LDL cholesterol significantly decreased in drug group (106.63 ± 5.31 vs. 97.91 ± 5.34, p < 0.05) but compared to placebo this reduction became nonsignificant. At
study end, TG levels in placebo group remained significantly higher than those in drug group but the mean changes in TG concentration in drug group vs. placebo group were nonsignificant. There were no correlation between the changes of total cholesterol levels, fasting blood glucose or other measured parameters and improvement of EF scores while an inverse correlation was found between the decreases of total cholesterol and age (r = -0.33, p < 0.05). Pioglitazone improved erectile function.

Table 3. Patients % reporting improved erection (Q1) & sexual activity (Q2).

<table>
<thead>
<tr>
<th>Response to questions</th>
<th>Placebo</th>
<th>Pioglitazone</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive to GAQ Q1</td>
<td>11%</td>
<td>58%</td>
<td>0.024*</td>
</tr>
<tr>
<td>Positive to GAQ Q 2</td>
<td>11%</td>
<td>58%</td>
<td>0.024*</td>
</tr>
</tbody>
</table>

irrespective of glucose level. Pioglitazone did not influence serum level of T and DHEAS in either group. Other laboratory parameters as well as BMI and W/H in drug group did not change significantly compared to those in control group.

Mild and transient adverse events were detected in only two patients receiving pioglitazone, ie, symmetrical hand edema and urinary frequency. Treatment with pioglitazone was generally well tolerated and with respect to co-administration of pioglitazone and sildenafil, no clinical drug interaction was observed. Treatment with pioglitazone improved urinary flow of one patient with slow-flowing urine.

DISCUSSION

Pioglitazone treatment significantly improved sildenafil responsiveness in men with erectile dysfunction who initially did not gain adequate response from sildenafil therapy alone. Since the duration of the study was not thoroughly sufficient for pioglitazone to exert its anti-diabetic action (20) and fasting blood glucose was not significantly influenced by the intervention, the ED improvement is likely irrespective of serum glucose level. This intervention, performed in the present preliminary study, appears to be safe and had no unfavorable effects on the measured markers.

To our knowledge the current study is the only clinical investigation that evaluated the effects of a PPARγ agonist in ED. Risk factors for cardiovascular disease could affect every integrated part of systemic vessels especially penile vasculature. Since clinically significant penile vascular disease precedes overt atherosclerosis in other arteries, e.g. coronary artery (28), ED itself might be potentially used as a pre-screening tool for evaluation of cardiovascular disease and its risk factors (5). As seen in many subjects participated in the present study, hyperlipidemia and especially hypercholesterolemia, were diagnosed for the first time, during the initial work up for ED and there was a co-incidence of ED with co-morbid diseases among sildenafil nonresponders. In drug and control groups, high incidence of risk factors including diabetes, hypertension, dyslipidemia, smoking along with the upper borders of the normal ranges in mean levels of serum glucose, cholesterol, LDL, TG, W/H and BMI were observed before the intervention. These findings are in consistence with those of other reports (27, 29).

![Figure 1](image-url)
Figure 1. Effects of placebo and pioglitazone on the EF domain of IIEF at baseline and at 9 weeks. *p < 0.05* for endpoint comparison with placebo.

Some evidence could help to figure out potential mechanisms for improvement of ED in this study. Endothelium-dependent vasodilation is impaired by high cholesterol (30) and cholesterol-lowering therapy could ameliorate endothelium-dependent relaxation (31). In the present study,
improvement of ED coincided with lowering of total serum cholesterol by pioglitazone as shown by other cholesterol lowering therapies such as statins (32). Although a significant correlation was not detected between these two parameters, more extensive studies are needed to clarify if there is a cause and effect relation.

It has been suggested that baseline EF score and apolipoprotein B determine responsiveness to sildenafil (33). Although apolipoproteins were not measured in this study but pioglitazone does exert apolipoprotein B-lowering effect (34). Thus, ED improvement, at least in part, could be attributed to this effect (34).

Niric-oxide (NO) production and release is augmented by thiazolidinediones (TZDs) at cellular level (35, 36). Also, pioglitazone increases NO bioavailability and improves endothelium dependent vasodilation through increasing adiponectin and insulin sensitivity or decreasing C-reactive protein (CRP), free fatty acids (FFA) and asymmetric dimethylarginine (ADMA) (19, 34, 37).

Inhibition of Rho/Rho-kinase signaling pathway by pioglitazone (38) might be one of the mechanisms for ED amelioration in our patients. This pathway was up-regulated in the corporal vasculature of diabetic rats with ED and its inhibition might enhance suppressed penile eNOS expression and cGMP levels, to restore erectile function (39).

In the only animal study that investigated the effects of pioglitazone in veno-occlusive model of diabetic erectile dysfunction, pioglitazone decreased apoptotic index, relative collagen content (collagen/SMC area) and collagen III/I ratios in corpus cavernosa (CC) along with a reduction in systemic oxidative stress in 9 weeks. In long term pioglitazone even prevented corporal veno-occlusive dysfunction and improved papaverin response (20). However, this study is incomparable with ours in study groups and dose equivalency.

In the current study, pioglitazone was preferred to rosiglitazone, with a conservative dose of 30mg/day to optimize the balance between probable clinical responses and side effects. Apart from high safety data of pioglitazone (40, 41), there is a potential for interaction of rosiglitazone with sildenafil to augment the systemic effects of NO, as rosiglitazone has shown direct coronary vasodilatory effects while pioglitazone has not (42).

Furthermore, with a local lower cost, pioglitazone has shown more favorable effects on lipid profile compared to unfavorable properties of rosiglitazone (43, 44). Meta-analyses suggested an increased cardiovascular risk associated with rosiglitazone therapy (44).

To our knowledge, the current study for the first time showed the impact of pioglitazone on serum level of T and DHEAS in men. In the only one previous study, rosiglitazone decreased the production rate of T in one week (45) but the latter and present study are different in medication, sample size, duration, characteristics of subjects and measurement methods. There is no report of impotence and decreased libido following pioglitazone therapy (40, 41). In the current study after the intervention, the mean levels of total T and DHEAS did not change significantly.

Small sample size might be regarded as a limitation for present study but to gain stepwise experiences in the lack of background clinical study of pioglitazone in ED, our sample size seems to be adequately large to fulfill the main initial objectives of the study although this sample size is not sufficient to entirely address the safety of the intervention.

The mean change of EF scores was almost clinically significant, based on IIEF scores interpretation (22), and also consistently supported by results of GAQs. This increase in mean score was not much more than 4 in pioglitazone group. The relative short period of the intervention might be responsible for this result and also for the insignificant impact of the intervention on the most of serum lipids.

In post follow-up visits, nearly 40% of drug group subjects decided to continue using pioglitazone to maintain improved erectile function and attain glucose control. Many of vasculoprotective effects of pioglitazone appear gradually (20) and, thus, in long-term treatment the EF scores could increase more than what we observed. In such condition, pioglitazone may also influence high glucose levels, if any, and the results must be interpreted accordingly. On the contrary to many similar studies, the negligible improvement of ED in our placebo group shows an unaccountable positive psychogenic feedback in the patients thus the ED improvement in drug group may be devoid of considerable psychogenic origin and almost
could be attributed to the pharmacological properties of pioglitazone.

Urinary symptoms associated with pioglitazone treatment could be attributed to water retention in renal collecting ducts (34). Finally, by considering the present study as a preliminary evaluation of the benefits/risks of pioglitazone treatment in ED patients, the results of this study could be implemented with optimization for a large trial.

Conflicts of interest: This study was supported by a grant (project No: P-441) from Iran University of Medical Sciences. The authors have no financial relation with any related company.

ACKNOWLEDGMENTS

The authors would like to thank: B. Shafaghi, PhD, for statistical assistance & S.A.M. Ziaee, MD, for clinical consultation, Shaheed Beheshti Unive. Med. Sci., M. Jazebi & staffs of Hemophili Society Center for lab analysis. A. Kebriaezadeh, PhD, & A.H. Farokhi, MD, for providing research facilities.

REFERENCES

[17]. Herrmann HC, Levine LA, Macaluso J Jr., Walsh

