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ABSTRACT - Dextran, the α-1,6-linked glucose polymer widely used in biology and medicine, promises 
new applications. Linear dextran applied as a blood plasma substitute demonstrates a high rate of 
biocompatibility. Dextran is present in foods, drugs, and vaccines and in most cases is applied as a 
biologically inert substance. In this review we analyze dextran's cellular uptake principles, receptor 
specificity and, therefore, its ability to interfere with pathogen–lectin interactions: a promising basis for new 
antimicrobial strategies. Dextran-binding receptors in humans include the DC-SIGN (dendritic cell–specific 
intercellular adhesion molecule 3-grabbing nonintegrin) family receptors: DC-SIGN (CD209) and L-SIGN 
(the liver and lymphatic endothelium homologue of DC-SIGN), the mannose receptor (CD206), and 
langerin. These receptors take part in the uptake of pathogens by dendritic cells and macrophages and may 
also participate in the modulation of immune responses, mostly shown to be beneficial for pathogens per se 
rather than host(s). It is logical to predict that owing to receptor-specific interactions, dextran or its 
derivatives can interfere with these immune responses and improve infection outcome. Recent data support 
this hypothesis. We consider dextran a promising molecule for the development of lectin–glycan interaction-
blocking molecules (such as DC-SIGN inhibitors) that could be applied in the treatment of diseases 
including tuberculosis, influenza, hepatitis B and C, human immunodeficiency virus infection and AIDS, 
etc. Dextran derivatives indeed change the pathology of infections dependent on DC-SIGN and mannose 
receptors. Complete knowledge of specific dextran–lectin interactions may also be important for 
development of future dextran applications in biological research and medicine. 
 
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For 
Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. 
____________________________________________________________________ 
 
INTRODUCTION  
 
Dextran is a glucose polymer with a prevalence of 
-1,6-linked units and is usually linear (Figure 1). 
Dextran is a component of vaccines, cosmetics, 
foods, and drugs. In addition, it is one of the most 
widely used blood plasma substitutes. Dextran-
based molecules (e.g., fluorescent markers) play 
an important role in biomedical research. 
Dextran’s properties provide various advantages 
including adjustable molecular size and viscosity; 
chemical stability and simplicity of modification; 
ability to target certain cell types and cellular 
compartments; relative biological inertness. We 
are the first to highlight that dextran shares 
specific receptors with many pathogens. 
According to recent studies, this commonality 
lends dextran the capability to have antimicrobial 
properties. 

Detailed publications on dextran have been 
written for medical professionals (1), biochemists, 
pharmacists, and biotechnology specialists (2-4). 

However complex work is lacking on dextran’s 
fate at the cellular level. Topics that must be 
addressed include types of cells that take up 
dextran, its receptors and interference with 
infectious processes. Dextran’s biological 
inertness is implied in many of its applications: it 
is often used as a nonfunctional biocompatible 
core molecule conjugated with the functional 
groups (fluorescent dyes, drugs, charged or 
hydrophobic groups). However, dextran-binding 
receptors that belong to the family of C-type 
lectins, namely mannose receptors (MRs), 
dendritic cell (DCs)-specific intercellular 
adhesion molecule-3 (ICAM-3)-grabbing 
nonintegrin (DC-SIGN), L-SIGN (the liver and 
lymphatic endothelium homologue of DC-SIGN), 
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and langerin, are involved in the immune 
recognition and uptake of numerous pathogens 
such as human immunodeficiency virus (HIV) 
and Mycobacterium tuberculosis (5).  

In HIV infection, DC-SIGN binding to gp120 
is considered to be a critical phase in the entry of 
HIV-1. DC-SIGN antibodies (6), short hairpin 
RNAs suppressing DC-SIGN gene expression (7) 
and carbohydrate-binding agents (8) have been 
touted to inhibit DC-SIGN binding of the HIV-1 
envelope complex to DCs and to prevent viral 
transmission. We have successfully reported 
inhibition of DC-SIGN and gp120 interaction by 
screening known inhibitors and carbohydrate-
binding agents by devising a novel target-specific 
high-throughput screening assay (9). We also 
found that DC-SIGN plays a critical role in 
infection through human T-lymphotropic virus-1 
(HTLV-1) envelope glycoprotein binding and 
DCs to T-cell transmission (10, 11). Overall, in 
these studies blocking of DC-SIGN was shown to 
prevent the binding and transmission of human 
retroviruses, indicating the suitability of the 
dextran-binding receptor, DC-SIGN,  as an 
antiretroviral drug target. 

Hepatitis B and C viruses, influenza, and 
various fungi and protozoa are also associated 
with uptake via C-type lectins, specifically the 

dextran-binding receptors. These receptors take 
part in uptake of the pathogens by DCs and 
macrophages and also participate in the 
modulation of intracellular signaling and immune 
responses. In many cases such modulation is 
beneficial for pathogens (5). Pathogens’ 
interactions with MR and DC-SIGN suppress T-
helper type 1 (Th1) immune responses which are 
crucial for defense against intracellular pathogens 
(12). Dextran unlike the surface molecules of 
pathogens is an inert ligand of mannose receptor 
and DC-SIGN that does not induce production of 
cytokines suppressing Th1 response (13). 
Therefore we suggest that dextran owing to 
receptor-specific interactions might interfere with 
an unfavorable immune response and give 
preference to Th1-inducing pathogen-Toll-like 
receptor signaling. Moreover dextran could 
prevent binding and uptake of many viruses via 
its receptors. To indicate all areas that show 
potential promise for future applications of 
dextran as a receptor-specific molecule, we point 
towards its existing medical and research 
applications (Figure 2). At last, the paradigm of 
“biologically inert” dextran can be revised, as this 
molecule affects the infectious process, most 
likely owing to the lectin-glycan interaction 
mechanism. 

 

 
Figure 1. Types of α-1,6 glucosides. A) Isomaltose (two glucose molecules with α-1-6 linkage). B) Isomaltotriose. C) 
Linear dextrans. D) Branched dextrans (schematically). e) α-Cyclodextran. 
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Figure 2. Dextran applications. Many dextran applications, especially medical and biological, can benefit from taking 
into account the receptor specificity of dextran. FITC = fluorescein isothiocyanate. 
 
 
DEXTRAN-BINDING RECEPTORS 
Mannose receptor: Macrophage mannose 
receptor (MR, CD206) is a carbohydrate receptor 
from the superfamily of C-type lectins (14, 15). It 
is expressed in liver and spleen endothelial cells, 
in macrophages, and to a lesser extent, in DCs 
(16). Its main role in mammals is the metabolism 
of glycoproteins taking place predominantly in 
the liver (17, 18). MR is also responsible for 
recognition and phagocytosis of pathogens and 
allergens, promotion of Th2 immune responses, 
and antigen presentation (13, 15). Moreover, the 
uptake of dextran via MR has been proven before 
(19). A list of all the cell types expressing MR 
that are able to take up dextran is depicted in 
Table 1. 
 
DC-SIGN family receptors: DC-SIGN is a 
receptor expressed by monocyte-derived dendritic 
cells (MDDCs) in vitro and in vivo (20), and by 
dermal/intestinal/genital mucosae dendritic cells 
in vivo (21, 22). It is also expressed on activated 
B cells (23), wound-healing (IL-4-activated) and 
alternative (M-CSF-activated) monocyte-derived 
macrophages, tumor-associated macrophages 
(24), certain tissue macrophages such as in the 
alveoli and lung (25). This receptor is responsible 
for the interactions of DCs with T cells (26), 
vascular and lymphatic endothelial cells (27), 
including umbilical vein (28) as well as blood-
brain barrier endothelial cells (D. Sagar and P. 
Jain, unpublished results), and also pathogens 
(12) and allergens (29) (providing their uptake 
and/or intracellular signaling). Signaling via DC-
SIGN limits Th1 responses influencing Toll-like 

receptor–dependent pathways through Raf1 
kinase (30). DC-SIGN is involved in the reception 
of pathogens of bacterial, viral, fungal, and 
protozoan origin, as well as those from 
multicellular parasites. This group of pathogens 
recognized by DC-SIGN includes mycobacteria, 
Helicobacter pylori, the worm Schistosoma 
mansoni, HIV-1, Ebola virus, cytomegalovirus, 
and Leishmania. Antigenic interaction with DC-
SIGN shifts the T helper type1/T helper type 2 
balance, causing a chronic infection (12). DC-
SIGN receptor in humans has one homologue, L-
SIGN (liver/lymph node-specific intercellular 
adhesion molecule (ICAM)-3-grabbing 
nonintegrin), expressed mainly in the liver (31); 
there are eight orthologues in mice, including 
SIGN-R1 to SIGN-R8 (32). Uptake of dextran via 
DC-SIGN family receptors (DFRs) DC-SIGN, L-
SIGN, SIGN-R1, and SIGN-R3 is proven (33-36). 
Cells that express these receptors are able to take 
up dextran (Table 1). 
 
Langerin and LSECtin: Langerin is a receptor 
specific to Langerhans cells of the skin (37) and 
uptake of dextran via langerin is proven (36). 
Human and mouse liver and lymph node 
sinusoidal endothelial C-type lectin receptors 
(LSECtins) are expressed mainly by liver 
endothelial sinusoidal cells and lymph 
endothelium (38). Although these receptors are 
not proven to bind dextran, it seems probable 
because of specificity similar to other dextran-
binding receptors. Cells expressing these 
receptors take up dextran (Table 1). 
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Table 1. Expression of mannose receptor, LSECtin, langerin, and DC-SIGN family receptors correlates with dextran 
uptake capacity 

Organ Receptor expression  Dextran uptake 

Liver 1) MR: Kupffer cells, LSEC (16) 1) Dextran uptake is present in Kupffer cells (39) and in 
LSEC (40) 

 2) L-SIGN, LSECtin: LSEC (31) 2) Dextran uptake is present in LSEC (40); dextran uptake 
is present in liver DCs (41) 

Spleen 1) MR: splenic macrophages, 
endothelial cells (16) 

1) Dextran uptake is present in phagocytes (39) and can be 
presumed according to dextran uptake along capillaries in 
endothelial cells (42) 

 2) SIGN-R1: spleen macrophages 
(35) 
DC-SIGN: spleen DCs (26) 

2) SIGN-R1-dependent dextran uptake is present in spleen 
macrophages (35); dextran uptake is present in spleen 
phagocytes (39) and in spleen DCs (41) 

Lung 1) MR: alveolar macrophages (16) 
2) DC-SIGN: alveolar macrophages 
(25) 

1, 2) Dextran uptake is present in alveolar macrophages 
(43)  

Kidney MR: macrophages, glomerular 
mesangial cells (16) 

Dextran uptake is present in phagocytes (39) and in 
mesangial cells (44)  

Heart 
muscles 

MR: macrophages (16) Dextran uptake is present in phagocytes (39) 

Brain MR: retinal microglia cells (45) Dextran uptake is present (45) 

Skin MR: dermal microvascular 
endothelial cells (46) 

Dextran uptake is present (46) 

Lymphatic 
system 

1) MR: endothelial cells of the 
lymph ducts (47) 
 

1) Dextran uptake (or at least binding) seems to be present 
in lymphatic endothelial cells due to dextran use in 
visualization of lymph vessels (49-51) 

 2) L-SIGN and LSECtin: 
endothelial cells of the lymph ducts 
and lymph nodes (31, 48); LSECtin: 
peripheral blood and thymic DCs 
(31) 

2) Dextran uptake or binding seems to be present in 
lymphatic endothelial cells due to dextran use in 
visualization of lymph vessels (49, 51) 

 APC 1) MR: APCs in skin,  muscles, 
salivary gland,  thyroid, pancreas 
(52) 
2) DC-SIGN: human immature 
MDDCs, mucosal DCs, immature 
DCs on periphery (skin, tonsils), and 
mature DCs in lymphoid organs 
(26); plasmacytoid DC precursors 
(25); activated B cells (23) 
3) Langerin: Langerhans cells 

1, 2, 3) Dextran uptake is present in human immature 
MDDCs and Langerhans cells (53), plasmacytoid DCs (54), 
activated B cells (55) 

 
APC, antigen-presenting cell; DC-SIGN, dendritic cell–specific intercellular adhesion molecule (ICAM) 3-grabbing 
nonintegrin; L-SIGN, liver/lymph node-specific intercellular adhesion molecule (ICAM)-3-grabbing nonintegrin; 
LSEC, liver sinusoidal endothelial cell; MDDC, monocyte-derived dendritic cell; MR, mannose receptor. 
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RECEPTOR-DEPENDENT AND 
INDEPENDENT ENDOCYTOSIS OF 
DEXTRAN 
In the context of possible antimicrobial 
application of dextran, it is important to note that 
this molecule can be taken up into the cells. 
Clinical dextrans (linear molecules with 
molecular masses 35,000–80,000 that can 
curculate in the bloodstream from hours to days) 
are more potent to be taken up into the cells 
compared to oligodextrans (linear oligomers of α-
1,6-linked glucose) (36). The rate of endocytosis 
is critical for the development of new 
applications: bigger molecules provide prolonged 
action and delivery into the cells, while smaller 
molecules do not provide the receptor clustering 
and are more potent as the entry inhibitors 
because they do not induce receptor-dependent 
endocytosis by themselves. 

Dextran is recognized and taken up by 
macrophages, DCs, LSECs and some other cell 
types prefferedly via specific receptors (33-36). 
However dextran can also be taken up via 
mechanisms of nonspecific fluid-phase 
endocytosis (FPE). Table 2 specifies the 
mechanisms of dextran internalization associated 
with certain cell types and receptors. MR (14) and 
DC-SIGN (56) participate in the clathrin-
mediated endocytosis (CME) mechanism. MRs 
and DFRs are necessary and sufficient for 
receptor-mediated dextran uptake in human 
immature MDDCs (33, 57). 

Use of dextran as a marker for different 
endocytosis processes requires the discrimination 
between CME, phagocytosis, and FPE. In CME 
the uptake of dextran can be dependent on 
receptors including MR, DC-SIGN (human), L-
SIGN (human), SIGN-R1 (mouse), SIGN-R3 
(mouse), and langerin. CME is available for 
particles up to 200 nm (72). Uptake of small 
particles via CME (and other endocytosis 
mechanisms) is sometimes called phagocytosis. 
This term has specific implications. Phagocytosis 
indeed uses the machinery of different types of 
endocytosis at the initial stage. However, owing 
to the initiation of additional mechanisms, it 
allows uptake of much bigger particles of 500 to 
2000 nm or more in diameter. Phagocytosis of 
dextran-based or dextran-covered particles can be 
dependent on the same receptors as CME (MRs, 
DFRs, langerin). Dextrans dissolved in media can 
be taken up by FPE mechanisms independent of 
ligand recognition. In the case of FPE, potential 
mechanisms include macropinocytosis or cdc42-
dependent―so-called CLIC/GEEC―pinocytosis. 

The main molecules participating in this process 
are clathrin-independent carriers (CLICs) and 
glycosylphosphatidylinositol-enriched endocytic 
compartments (GEECs). Different endocytosis 
mechanisms may be activated simultaneously. 

Fluorescently labeled dextrans became quite 
popular in endocytosis studies when Schröder et 
al. first developed fluorescently labeled dextran 
(fluorescein isothiocyanate, FITC-dextran) in 
1976 (73). Ohkuma and Poole published their 
classical work on lysosomal acidification control 
using FITC-dextran in 1978 (74). In recent 
decades the labeled dextrans have been used 
extensively as lysosomal markers (75). They were 
used to evaluate FPE (76), endocytic activity in 
general (77), phagocytosis (78, 79), 
macropinocytosis (80), and macropinocytosis plus 
MR-mediated uptake (19). They were also applied 
as the ligands of MR (81), SIGN-R1 (35), and as 
the ligand of MR and DC-SIGN simultaneously 
(57). All the terms clathrin-mediated endocytosis, 
phagocytosis, fluid-phase endocytosis, and 
macropinocytosis applied to dextran (or dextran-
containing particles) as an endocytotic or 
lysosomal marker are applicable, but in different 
cases: dependent on cell types and phenotypes. 

When clinical dextran is injected into the 
bloodstream, one part is taken up by cells, another 
part is excreted by the kidney and a third part is 
retained in the bloodstream. Ratio of these parts 
depends on the molecular weight and the dose 
(for more specific data see (39, 82, 83)). The main 
organs of dextran uptake are liver, spleen, lung, 
and kidney. From the blood, dextran can enter 
into interstitial fluid, then the lymph, and then 
back to the bloodstream. Hepatocytes are able to 
transport small amounts of dextran to the bile (39, 
84-87). Kidney filtration of dextran is dependent 
on the molecular mass/size: molecules smaller 
than ~50 kDa are excreted quickly, whereas larger 
ones stay in the blood longer (Figure 3A and B) 
(85, 88). Cells that take up dextran are able to 
metabolize it slowly into glucose by acid and 
neutral -glucosidases expressed in all cell types 
(89-92). These glucose molecules participate in 
glucose metabolism and can yield dextran-derived 
exhaled carbon dioxide (93, 94). 
 
DEXTRAN DERIVATIVES IN 
TUBERCULOSIS, CANDIDIASIS, AND 
INFLUENZA MODELS 
Dextran has shown to be inert to DC cytokine 
reactions while the ligands of pathogens binding 
to MR and DFRs restrict Th1 response (12, 13).  
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Table 2. Dextran endocytosis 

Endocytosis  Characteristics of dextran uptake 

CME, receptor-
dependent 
uptake 

1) MR-dependent CME of fluorescent dextran in: 
● Human immature MDDCs, simultaneously with macropinocytosis (19) 
● Human immature MDDCs, dependent on MR expression (58) 
● Human inflammatory dendritic epidermal cells (59) 
● Human retinal microglia cells (45) 
● Mouse immature spleen and bone marrow DCs, macrophages (fluorescent dextran 

3/70/500/2000) (60) 
● Mouse liver sinusoidal endothelial cells (61) 

2) DFRs-dependent CME of fluorescent dextran in (receptor-positive cells here means 
transfectants): 

● Human embryonic kidney SIGN-R1-positive and SIGN-R3-positive HEK293T cells 
(36)  

● Mouse spleen macrophages in vivo, SIGN-R1-dependent uptake (35) 
● Mouse leukemic SIGN-R1-positive RAW264.7 transfectants and mouse spleen 

macrophages, SIGN-R1-dependent uptake (62) 
● Mouse spleen marginal zone SIGN-R1 -/- macrophages do not take up fluorescent 

dextran (63) 
● Hamster ovary L-SIGN-positive Cho cells (34) 

3) Langerin-dependent CME of fluorescent dextran in langerin-positive HEK293T cells (36)

Macropino-
cytosis or FPE 

FPE of fluorescent dextran in: 
● Human immature DCs, simultaneously with MR-dependent CME (19) 
● Human epithelial carcinoma cells (64) 
● Mouse synovial fibroblasts (65), embryo fibroblasts NIH3T3 (66) 
● Mouse bone marrow–derived macrophages (67) 
● Mouse bone marrow–derived immature (not in mature) DCs (68) 
● Mouse bone marrow macrophages (macro- and micropinosomes are present) (69) 
● Mouse bone marrow macrophages (uptake is accompanied by leaks of fluorescent 

dextran into cytosol) (70)  
● Madin-Darby canine kidney cells (71) 

Phagocytosis Use of this term is misleading for dextran particles <0.5 µm in diameter 

CME, clathrin-mediated endocytosis; DFR, DC-SIGN (dendritic cell–specific intercellular adhesion molecule [ICAM]-
3-grabbing nonintegrin) family receptors; FPE, fluid-phase endocytosis; L-SIGN, liver/lymph node-specific 
intercellular adhesion molecule (ICAM)-3-grabbing nonintegrin; MDDC, monocyte-derived dendritic cell; MR, 
mannose receptor. 

 
 
The studies of dextran or dextran-drug conjugates 
in models of bacterial, fungal, and viral infections 
that are dependent on dextran-binding receptors 
(Table 3) are of great interest. In such models, the 
dextran core is able to interfere with pathogen–
macrophage and pathogen-DC interaction. 
Possible inhibition of pathogen uptake or changes 
in immune response by dextran should influence 
infection outcomes and several studies confirm 
this notion. 

Dextran-isoniazid has shown interesting 
results in a model of tuberculosis-like 
granulomatosis induced by Bacillus Calmette–
Guérin (BCG) injection. The intensity of fibrotic 
lesions in this model after treatment with dextran 
conjugate was compared with free isoniazid 
treatment. Fibrosis of the lung decreased 30%, of 
the spleen 3.5-fold, and of the liver more than 

fourfold. Hepatotoxicity decreased 2.2-fold, and 
the development of necrosis into granulomas 
decreased 10-fold (159). Decreased lung 
remodeling may be beneficial for prevention of 
caviation and subsequent transmission (160) of 
tuberculosis, and could also help drugs reach the 
mycobacteria inside granulomas, that is itself an 
important problem (161). 

Dextran influences the phagosomal-lysosomal 
fusion and the death rate of mycobacteria BCG 
inside mouse peritoneal macrophages. The control 
rate of death inside macrophages was 33%, and 
with dextran (22 g/ml) it was 39%. Isoniazid 
treatment (7 g/ml) yielded a bacterial death rate 
of 43%, while the conjugate of dextran with 
isoniazid (25 g/ml, same isoniazid content) 
yielded a 53% death rate.  
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Figure 3. A) Dextran metabolism and excretion pathways. Dextran from the blood circulates in the interstitial fluid and 
lymph ducts and interacts with most cell types. The main organs of active dextran uptake are the liver, spleen, and 
lungs. Kidney cells take up dextran via pinocytosis and do not metabolize it, providing only temporarily retention. B) 
Time dependence of clinical dextran excretion and metabolism. After dextran injection, kidneys excrete the fractions 
with low molecular mass. Heavier fractions circulate in the body fluids or are taken up into the endosomes. Endosomal 
compartment volume is limited and some injected dextran may remain in the circulation. In the endosomes, dextrans 
are metabolized to glucose or excreted by transcytosis. Owing to metabolism, new endosomal volume becomes 
available and can be filled with dextran molecules from the blood. Thus the dextran endosomal pool depletes when 
dextran concentration in the blood does not provide its renewal. LSEC, liver sinusoidal endothelial cells. 
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Table 3. Dextran-binding receptors: roles in infections 

Receptor Pathogens Receptor role in infection 

Mannose 
receptor 

1. Mycobacterium tuberculosis; M. kansasii, 
M. phlei, and M. smegmatis 

1. Uptake of bacteria (95), inhibition of 
phagosomal-lysosomal fusion (96) and restriction 
of Th1 response (13); uptake (97) 

 2. Retroviridae (HIV-1; Visna/Maedi virus; 
lentivirus) 

2. Uptake of virus (98), induction of IFN-  (99), 
increase of sexual transmission efficiency (100); 
virus uptake, in sheep (101); increased organ 
damage (102) 

 3. Candida albicans 3. Impaired killing (103), uptake (104) 

 4. Orthomyxoviridae (influenza viruses) 4. Uptake of virus (105) 

 5. Flaviviridae (Dengue virus) 5. Uptake of virus (106) 

 6. Rhabdoviridae (vesicular stomatitis virus) 6. Induction of IFN-  (99) 

 7. Herpetoviridae (herpes simplex virus) 7. Induction of IFN-  (99) 

 8. Hepadnaviridae (hepatitis B virus) 8. Uptake of virus (107) 

 9. Schistosoma mansoni 9. Induction of Th2 phenotype (108) 

 10. Bunyaviridae (Rift Valley fever virus, 
Toscana virus, Uukuniemi virus) 

10. Uptake of virus (109) 

 11. Paramyxoviridae (measles virus) 11. Virus attachment, DCs and T cells infection 
(110) 

 12. Francisella tularensis 12. Bacteria uptake (111) 

 13. Yersinia pestis 13. Bacteria uptake (112) 

 14. Leishmania spp. 14. Uptake of the pathogen, modulation of immune 
response (113, 114) 

DC-SIGN 1. M. tuberculosis 
 

1. Uptake of mycobacteria by DCs (115), 
restriction of Th1 response (12) 

 2. Retroviridae (HIV-1; human T-
lymphotropic virus 1) 
 

2. Uptake of virus and transinfection of other cells 
(6); cross-talk with Nef-1 signaling and decrease of 
IL-6 production (116); binding (11), uptake of 
virus, infection and transinfection (10) 

 3. Candida albicans 3. Uptake of fungi (117) 

 4. Orthomyxoviridae (influenza viruses) 
 

4. Uptake of virus and transinfection of other cells 
(118); improved viral replication (119) 

 5. Coronaviridae (SARS; infectious bronchitis 
virus) 

5. Uptake of virus (120); uptake of virus (121) 

 6. Arenaviridae (Lassa virus, Junin virus) 6. Uptake of virus (122); uptake of virus (123) 

 7. Flaviviridae (hepatitis C virus; Dengue 
virus; West Nile virus, Tick-borne encephalitis 
virus) 

7. Uptake of virus (124); uptake of virus (125), 
platelet activation (126); uptake of virus (127); 
predisposition to severe forms of encephalitis (128) 

 8. Paramyxoviridae (human respiratory 
syncytial virus) 

8. Modulation of immune response (129) 



J Pharm Pharm Sci (www.cspsCanada.org) 17(3) 371 - 392, 2014 
 

 
 

379 

 9. Herpesviridae (cytomegalovirus, 
herpesvirus 8) 

9. Uptake of virus and transinfection of other cells 
(130), virus uptake (131, 132) 

 10. Filoviridae (Ebola virus; Marburg virus) 10. Uptake of virus, transinfection (120, 133) 

 11. Helicobacter pylori 
 

11. Uptake of bacteria, modulation of immune 
response (134) 

 12. Leishmania sp. 
 

12. Uptake of the pathogen, modulation of immune 
response (114, 134-136) 

 13. S. mansoni 
 

13. Binding of the surface molecule to the host 
cells, modulation of immune response (137) 

 14. Togaviridae (Sindbis virus) 14. Uptake of virus (138) 

 15. Escherichia coli 15. Support of phagocytosis (139) 

 16. Klebsiella pneumoniae lipopolysaccharide 
serotype O3 

16. Binding of bacteria (134) 
 

 17. Bacteroides fragilis 17. Processing and presentation to T cells (140) 

SIGN-R1 1. M. tuberculosis 
 

1. Binding of bacteria, modulation of immune 
response (141) 

 2. Candida albicans 2. Uptake of fungi (142) 

 3. Streptococcus pneumoniae 3. SIGN-R1 plays a defensive role (143), being 
important in development of IgM response (144) 

SIGN-R3 1. M. tuberculosis 
 

1. Binding, modulation of immune response (145) 

 2. Leishmania spp. 2. Binding and uptake of bacteria, modulation of 
immune response (136) 

L-SIGN 1. M. tuberculosis 
 

1. Binding, modulation of immune response (141) 

 2. Retroviridae (HIV-1, HIV-2; SIV) 
 

2. Uptake of virus and transinfection of other cells 
(48, 146) 

 3. Coronaviridae (infectious bronchitis virus) 3. Uptake of virus (121) 
 

 4. Arenaviridae (Lassa virus, Junin virus) 4. Uptake of virus (123) 

 5. Flaviviridae (hepatitis C virus; West Nile 
virus) 

5. Uptake of virus (124, 147); uptake of virus (127) 

 6. S. mansoni 6. Binding of the pathogen (148) 

 7. Filoviridae (Ebola virus; Marburg virus) 7. Uptake of virus and transinfection of other cells 
(133, 149); uptake of virus (120) 

 8. Coronaviridae (SARS coronavirus) 8. Uptake of virus (120) 

 9. Togaviridae (Sindbis virus) 9. Uptake of virus (138) 

 10. Leishmania infantum 10. Uptake of bacteria (135) 

Langerin 1. Mycobacterium leprae  1. Uptake and antigen presentation (150) 
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 2. Retroviridae (HIV-1) 2. Uptake of virus and its degradation (151) 

 3. Candida spp. (including C. albicans), 
Saccharomyces species, and Malassezia furfur 

3. Binding and phagocytosis of fungi (152) 

 4. Paramyxoviridae (measles virus) 4. Uptake of virus (153) 

LSECtin 
(probable 
dextran- 
binding 
receptor) 

1. Hepadnaviridae (hepatitis B virus) 
 

1. LSECtin downregulates inflammation but 
prolongs the time of virus liver clearance (154) 

 2. Filoviridae (Ebola virus) 
 

2. Binding of the virus, infection enchancement 
(155, 156) 

 3. Coronaviridae (SARS coronavirus, SARS) 3. Binding, infection enchancement (155) 

 4. Flaviviridae (hepatitis C virus) 4. Virus binding (157) 

 5. Arenaviridae (Lassa virus) 5. Virus binding (158) 

DC, dendritic cell; DC-SIGN, dendritic cell–specific intercellular adhesion molecule (ICAM)-3-grabbing nonintegrin; 
IFN, interferon; L-SIGN, liver/lymph node-specific intercellular adhesion molecule (ICAM)-3-grabbing nonintegrin; 
SARS, severe acute respiratory syndrome; SIV, simian immunodeficiency virus. 

 
 
The latter result may be explained by targeted 
delivery of dextran into the phagosomes and 
lysosomes where the pathogen is taken up (162). 
An increase in phagocytic activity after dextran 
uptake is probably connected with NADPH 
oxidase 2  upregulation which is responsible for 
antimicrobial activity (163). In the systemic 
candidiasis model the dextran-amphotericin B 
conjugate given 10 days after infection decreased 
the number of granulomas in the liver by fourfold 
(164). In experiments on dextran–rimantadine this 
conjugate has shown to have a significantly better 
defencive effect in the chicken embryo and mouse 
models for influenza A and B virus and in the 
mouse model of tick-borne encephalitis (165). It 
remained unclear whether dextran alone could 
cause similar effects in the treatment of 
infections. 

Regularly infused in mice in a model of BCG-
induced granulomatosis, oxidized dextran (OD; in 
these studies-the molecule of clinical dextran 
containing less than 3% of glucose units oxidized 
with formation of aldehyde groups) reduced the 
number and size of granulomas in the organs; 
increased numbers of fibroblasts (with reduced 
activity) in the granulomas; decreased destructive 
and necrotic changes in the liver; and decreased 
fibrosis in the liver and lungs (166). In a mouse 
influenza model, OD decreased fatality by 3.3-
fold and significantly decreased lung fibrosis 
(167). In a model of systemic candidiasis, the 
number of granulomas in the brain decreased 

eightfold after OD treatment compared with 
antifungal amphotericin B. While the control 
group of mice died, 60% of OD-treated mice 
survived (168). 

The mechanism of OD action is still 
undiscovered; however, this form of dextran has 
been shown to increase the degree of adhesion of 
peritoneal cells, which may indicate increased 
activity of macrophages (169). OD reduces the 
viability of these cells, but conversely it 
stimulates metabolic and oxidative processes 
(169). In vitro dextran, and to a greater extent 
OD, are able to stimulate macrophage production 
of granulocyte-macrophage colony-stimulating 
factor (169), which supports the differentiation 
and activation of antigen-presenting cells (170). 
OD causes a shift in the balance of activities 
between nitric oxide synthase and arginase 
towards increasing nitric oxide production by 
macrophages (171). Another effect is increased 
macrophage ROS production (172). 

Chemical differences between dextran and 
OD are not significant; it is unknown whether 
oxidation played a role in in vivo results. Probably 
specific binding of MR and DFRs by dextran 
modulates pathogen-induced T helper responses 
(Figure 4) (173, 174). Thus antifibrotic action of 
dextran in BCG model (159, 166) could be linked 
to restricted Th2 reaction contributing to tissue 
remodelling. If this hypothesis is true, dextran 
could also modulate the immune response to Th2 
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overreaction-inducing allergens dependent on MR 
(175) and DC-SIGN (176, 177). 

Preliminary results are available concerning 
the in vivo action of nonmodified dextran in 
models of infections dependent on dextran-
binding receptors. Dextran introduced intranasally 
simultaneously with heat-killed M. tuberculosis 
H37Rv decreased lung concentrations of both 
IFN- and IL-10, while the IFN-/IL-10 ratio 
decreased 2.5-fold, a result that rather illustrates 
suppression of Th1 response (178).  

Dextran introduced intranasally 
simultaneously or a day before infection with 10 
LD50 of the H5N1 influenza virus saved or 
prolonged lives of mice (179). These experiments 
do not provide evidence on dextran’s mechanisms 
of action, a question that will be addressed in 
future works. They show, however, that dextran 
may be a promising molecule to add to the long 
list of treatments against infections dependent on 
dextran-binding receptors (Table 3). 

 

DEXTRAN IN PREVENTING HIV 
INFECTION AND TRANSMISSION 
Sexual transmission of HIV is the most prevalent 
route for infection (180, 181). DCs of intestinal 
and genital mucosae express DC-SIGN (21). They 
can be productively infected with HIV and have 
high capacity to trans-infect the T cells―the main 
HIV targets. DC-SIGN itself is an important 
player in the formation of DC-T cell infectious 
synapses (182, 183); signaling via DC-SIGN 
promotes increased viral uptake (184) and 
productive infection (185), and also influences 
DCs regulatory roles (30). HIV entry inhibitors 
are commonly used antiretrovirals (186), but there 
are still no inhibitors of HIV-DC-SIGN 
interaction introduced into the clinics, in spite of 
proven importance of receptor in myeloid cells 
infection and trans-infection of T cells. 

 
 
 
 

 
 
Figure 4. Dextran and glycan-lectin interactions. This simplified scheme shows that if dextran decrease the availability 
of MR and DC-SIGN for the pathogens, this may influence immune responses. It is known that DC-SIGN ligands 
prevent binding and entry of pathogens, interfere with trans-infection of T cells by DCs, skew the myeloid cells 
activation phenotypes and influence immune response. 
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Dextran 60 given before and after infection 
provides significant decrease of the HIV-1 viral 
RNA inside the B-THP-1/DC-SIGN cells. 
Dextran oligomers also inhibit infection (S. 
Pustylnikov and P. Jain, unpublished results) and 
indeed carbohydrate-binding domain of DC-SIGN 
binds to ~3 carbohydrate units (187). This 
suggests dextran is an effective inhibitor of HIV-
DC-SIGN interaction. It was shown that dextran 
decreases the mortality rate of HIV-infected 
human monocyte-derived macrophages from 84% 
to 48% (188). This could be a result of the 
inhibition of the minor HIV-DC-SIGN binding 
(189), as well as a result of the inhibition of HIV-
MR interaction shown in macrophage infection 
and viral transmission (98). 

We suggest that dextran as a DC-SIGN and 
MR ligand could not only decrease the rates of 
HIV infection and trans-infection in myeloid 
cells, but could also serve to deliver the 
antiretrovirals or vaccines to DCs. Anti-HIV gel 
formulations have proven their efficiency in 
clinical trials (190); use of viral entry inhibitors in 
gel formultions can provide full protection in vivo 
(191). If dextran proves to be an HIV entry 
inhibitor, it could be used as a gel formulation. 
 
CONCLUSIONS 
 
The combination of dextran properties is unique. 
Dextran is a hydrophilic, nonionic molecule with 
adjustable molecular mass distribution (Figure 2) 
and viscosity/density in solutions. Dextran’s lack 
(or near lack) of toxic effects, pyrogenic or 
allergic reactions and accumulation in the body; 
its thermal and chemical stability allowing 
sterilization and obtaining the derivatives; its 
applicability in mass production at comparably 
low costs (82, 192): all make dextran an appealing 
biopolymer for multiple applications.  

Antimicrobial strategies that could exploit 
dextran is a speculative topic due to the lack of 
data. However currently dextran is already used in 
a great amount of diverse aplications in fields of 
research and medicine which can benefit from our 
analysis of the dextran-binding receptors (Figure 
2). Dextran is a popular component of conjugates 
and nano-particles. Numerous works on drug-
dextran conjugates show interesting results in 
vitro and in vivo and provide arguments for 
improved pharmaceutical properties of such 
compounds (reviewed in (193-198). Our analysis 
suggests that concept of targeted delivery―the 
conjugation of dextran with antimicrobials to 
reach the pathogens inside the specific cells that 
take up dextran (liver cells, macrophages and 

DCs)―being itslef not a new idea, can benefit 
from knowledge of dextran-binding receptors and 
their roles in a number of infections. 

Dextran’s influences on infections has not 
been studied comprehensively to date and only 
minor influences are known. Dextran-binding 
MR, DC-SIGN (in human)/SIGN-R1/SIGN-R3 
(in mice), L-SIGN, and langerin play large roles 
in infectious diseases (Table 3). Besides 
regulation of immune cell interplay, these 
receptors participate in binding, recognition, and 
uptake of different pathogens. Targeting of 
dextran-binding receptors (e.g., MR and DC-
SIGN) is a popular concept. In recent years 
studies devoted to the development of DC-SIGN 
therapeutic ligands have yielded new data in cell 
biology (203), immunology (204), and 
biochemistry (205, 206). The concept of 
therapeutic DC-SIGN antagonists/inhibitors is 
promising and in need of further development (9, 
207). Targeting the MR is suggested for vaccine 
development (201), for delivery of cargo into 
macrophages (202) or liver cells (195). Dextran 
can play a role in the prevention of pathogen 
binding, entry and signaling in MR-expressing 
myeloid cells wich participate in blood-brain 
barrier disruption in neuroinvasive infections 
(208): this was probably the case in prevention of 
C. albicans infection in the brain (168). Skewing 
the T helper responses could be a mechanism that 
allowed dextran derivatives to decrease tissue 
remodelling in the BCG infection model (159, 
166) (Figure 4). Dextran has been recently used as 
a backbone for the nucleic acids delivery 
conjugate and our analysis could help in the 
development of this field (199). We also note that 
dextran could be of use in the glycosilation of 
adenoviruses used for gene transfer (200), 
possibly improving the biocompatibility and 
providing predictable uptake by certain cell types 
and receptors. 

Further, the route of delivery of dextran and 
its derivatives require to be taken into 
consideration. Infusion will result in primary 
uptake in the liver, which is not a target of 
respiratory or mucosal infections. Dextran-based 
sprays or gels are an option, but they are not 
helpful in generalized infections. Clinical 
dextrans with molecular weights in the range 
35,000 to 80,000 cannot reach a systemic 
infection if given orally, but smaller molecules 
such as dextran with an average molecular weight 
of 1,000 probably can. Dextrans with high 
molecular weights induce active endocytosis, 
while smaller molecules do not (36). They may 
not only decrease the amount of available 
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dextran-binding receptors on the cell surface but 
also prevent endocytosis and following recycling 
of receptors (shown for both MR (209) and DC-
SIGN (210)) and keep the cells’ endocytic 
capacity at its initial level. 

Medical and biological applications of 
dextran can be considered in a new way via the 
prism of receptor-specific interactions. This can 
be an instrument to interpret the data on dextran 
conjugates and derivatives. If antimicrobial 
properties of dextran can be applied in humans, 
dextran might become an approved, specific, 
nontoxic, cheap, and accessible 
immunomodulatory drug. These qualities are 
extremely important in the case of deadly 
infections that affect resource-limited populations. 
Dextran may possess antimicrobial and 
antiallergic effects owing to binding to MR, 
DFRs, and langerin. This review suggests a 
primary aim for future studies: testing of the 
ability of dextran to act against a panel of 
pathogens exploiting dextran-binding receptors to 
enter the cells and to modulate the immune 
responses. 
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