Canadian Studies in Population, Vol. 19(1), 1992, pp. 1;]6

Life History Analysis in Demography: Impllcatlons for
Teachmg and Research

Fernando Rajulton

Department of Sociology

The University of Western Ontario
London, Ontario, Canada

Abstract

In demography, a retrospective observation plan has become a common data collection
procedure, and almost all surveys done — in recent times collect life history data. " To
justify the collection of life history information, all three of its aspects — namely, the
timing, sequence and number — should be considered in a meaningful analysis. A
multivariate analysis of the timing of one or two events using a number of covariates
without consideration of the sequence or number of events is not, and cannot be, a life
history analysis. By bringing out relevant points regarding the fundamental assumptions in
life history analyses, this paper aims at contributing toward developing theories of change
and procedures of estimation and testing. In particular, three stochastic models — Markov,
semi-Markov and non-Markov — are discussed in detail. Other possible models, including
those of diffusion as well as of unobserved heterogeneity, are suggested.

Résumé

En démographie, le plan d’observation rétrospectif est devenu un mode habituel de collecte
de données et presque toutes les enquétes effectuées récemment recueillent les données du
cycle de vie. Pour que cette démarche se justifie, les trois aspects du cycle — moment,
séquence et nombre — devraient étre pris en considération dans toute analyse significative.
L’analyse multifactorielle du moment de survenue d’un ou de deux événements qui utilise
un certain nombre de covariables, mais sans s’intéresser a la séquen‘ce ou au.nombre
d’événements, ne mérite pas le nom d’analyse du cycle de vie. Le présent article vise &
contribuer 3 Pélaboration des théories de changement et aux modes d’évaluation et de
vérification en faisant ressortir les €léments pertinents des hypothéses fondamentales des
analyses de ce type. Trois processus stochastiques particuliers sont décrits en détails: la
chaine de Markov, les modéles semi-markovien et non markovien. Les modéles de diffusion

et d’hétérogénéité non observée figurent également parmi les autres modéles suggérés.

Key Words: life history data, stochastic processes, unobserved
heterogeneity, parametric models

Introduction
Life is marked by a sequence of events. Individuals are born, enter school,
graduate, are employed, marry, give birth, migrate, are divorced, become
widowed, and ultimately die. The occurrences of these events and their
consequences on populations and societies have been the focus of research
in the social sciences. Because events are qualitative changes that occur at
specific points in time, and because an individual’s life can be
characterized by a particular sequence of events, the best way to study
events (as well as their causes and effects) is through complete (or
partially complete) information on the number, timing and sequence of
events. Data which provide such information are called event history or
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life history data. This is in contrast with other incomplete types, such as
panel data, which record events at a set of arbitrary times — usually equal-
spaced and obtained through censuses or surveys at regular intervals —
and event-count data, which record the number of events-in an interval.
Event histories provide the best information (depending on how complete
the enquiry is) on each individual’s sample path, which traces the course of
events and the different states an individual occupies along with the
duration spent in each state. Thus, properly speaking, a set of event
history data consists of all sample paths of all individuals in a sample.

Event history data are collected through a prospective or retrospective
observation plan (Pressat, 1969). In a prospective plan, members of a
cohort are observed and their demographic experience is recorded as soon
as it occurs. A few countries keep population registers wherein a record of
each individual is maintained and updated when events occur. This is an
ideal situation that provides a complete continuous time recording of all
events. In a retrospective plan, individuals are asked at certain times
through a survey about their experiences in the past. Its major difference
from a prospective observation plan is that experiences of only a subcohort
can be recorded through this plan; some individuals are necessarily
excluded from recording because of death or emigration.

There are two approaches in measuring an event through a retrospective
plan. First, individuals are asked about the events, either all or selected
ones, experienced from a specific time in the past up to the time of
interview or to an earlier time. Second, certain events (such as migration)
are measured indirectly by comparing the current status (as current region
of residence) with the one at some previous point in time (such as region
of birth or residence one year before). In migration analysis, these two
approaches yield two different sets of data: the first records events
(migrations), while the second records individuals who experience events
(migrants). The distinction between these two is unnecessary in analyses
of other events, where the number of events and the number of individuals
who experience them are identical. The present paper is confined to the
first type of data — records of events.

Even though retrospective data have many advantages, they also have a
few typical drawbacks. Two of the serious ones are: (@) a sample may not
be representative of all persons in a particular cohort of interest because
of the death or emigration of some members before the time of enquiry;
the individuals thus excluded from observation may be a select group; and
(b) recall error or systematic mistiming of events can yield spurious trends;
it has been established, however, that though errors in report of timing are
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quite common, the logical sequence of events is usually reported correctly -
(Tuma and Hannan, 1984).

In demography, a retrospective observation plan has become a common
data collection procedure, and almost all surveys done in recent times
collect life history data. For example, the World Fertility Surveys in the
1970’s and the National Migration Surveys conducted in a few developing
countries in the ESCAP region in the 1980’s collected life history data on
specific demographic phenomena such as migration, nuptiality and fertility.
In spite of this, however, analyses are still being carried out as if panel
observation plans had been used! At best, multivariate techniques are

used to analyze a single event or two selected from a sequence of different
~ events, thus neglecting to consider the course of events in an individual’s
life. To justify the collection of life history information (no doubt done at
a very high cost!), all its three aspects — namely, the timing, sequence and
number. — should be considered in a meaningful analysis. Contrary to
claims made by some research papers appearing in refereed journals, a
-multivariate analysis of timing of one or two events using a number of
covariates but without consideration of the sequence or number of events
is not, and cannot be, a life history analysis. This present state of affairs
can be improved by developing (@) theories of change and (b) procedures
of estimation and testing. This paper aims at contributing toward this
development by bringing out relevant points regarding two fundamental
assumptions in life history analyses: () that a specific stochastic process
generates events, which can be appropriately analyzed; and, (b) that
certain characteristics of individuals, as well as of contexts, affect change
processes. '

Stochastic Models of Life History Analysis

The first assumption, that a specific stochastic process generates events,
touches on the basic modelling procedure: whether a model should be
deterministic or stochastic; that is, whether the effect of any change in a
system can be predicted with certainty or not. It is common knowledge
that no social system is fully determined, controllable or predictable, and
that no human behaviour warrants deterministic predictions. Nobody can
predict with certainty, for example, whether a son will achieve his father’s
status, when a man/woman will decide to change his/her job or marital
status, whether a chance encounter between members of a group will lead
to a diffusion of new social trends, and so on. This uncertainty implicit in
social systems can be taken into account only by introducing probability
. distributions into a model. Simply stated, the equations of a model should
include random variables. A model which accounts for a large element of
chance in the process under study and which contains variables that cannot
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be fully controlled or determined prior to observation (and hence have a
probability other than one) is called a stochastic model (Neyman called it
"dynamic indeterminism"). Predictions, then, become probabilistic since
probabilities are assigned to various possible future statuses of the process.
Probabilistic predictions are important especially for normative behaviour
with which demographers generally deal and which is mostly associated
with the concept of risk.

Apart from the question of uncertainty, there are many other reasons,
both substantive and technical, for using stochastic models (for details, see
Tuma and Hannan, 1984). To cite a few, stochastic models: (1) enable us
to extend the theory of rational decisions to those situations where the
outcomes of decisions or the circumstances influencing the outcomes are
not known with certainty; (2) enhance our understanding of systemic
relationships beyond simple "chains of causality" (see below for a
discussion on this topic); (3) provide opportunities for including
unobservables or unmeasurables in analysing the influence of covariates
(discussed below);. (4) can explain the evolution of a distribution, even
when the initial distribution is uniform; this is in contrast to a deterministic
model, which can explain a change from some initial distribution but
cannot explain how the initial distribution itself arose in the first place; (5)
are a better approach to the dynamics of variability in distributions, since
many social processes are often revealed more clearly in variances (of
behaviours) than in averages; for example, the shape of an income
distribution rather than its mean; or, variances in timing of progression
into higher parities rather than total fertility rate, and so on; (6) make
possible a joint study of qualitative and quantitative changes; for example,
interdependent linkages between income and changes in marital status, or
between type of city and crime rates.

Basic stochastic processes or probabilistic laws governing the occurrence
of events can be inferred from the observed distributions. For example, to
say that the number of events at time ¢ depends on the number of events
that already occurred implies a contagion or diffusion process. Or to say
that the number of events falls into different categories, each with a
specific process but with different parameters, points to a problem of
heterogeneity. And to say that the parameters themselves are functions of
time indicates a process which is non-stationary.

A stochastic process is simply a collection of random variables that
describes the evolution of a process over time. We shall denote by X(¢) the
number of events at time ¢, or, in general, the number of individuals who
have experienced a given event at time ¢. If a process happens to be
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bidimensional (for example, the number married at any time depends on
both the formation and dissolution of marriages), we shall denote the
corresponding number by a vector X(t) ={X;(t), X5(t)}, which represents
two related processes. Extension to the multidimensional case is
straightforward. ‘

In order to deal with life history data, the above concept can be
generalized through the following: (1) Instead of associating X(f) with the
number of events at time ¢, we can think of life history data as describing
the values of a qualitative variable X{(¢) within some observation period T.
- The set of distinct values of X(t) can be denoted by a state space S, and the
number of distinct (mutually exclusive) values are the size of the space.
For example, in a marital status analysis, the state space S may consist of
five marital states and their associated values as follows: mnever
married=1, cohabiting=2, presently married=3, widowed=4, and
divorced=5. (2) It is also possible to include absorbing states, which once
entered, cannot be left, depending on the type of analysis. In a study of
parity progression, for example, an analyst may decide to introduce an
absorbing state "sterilization”. (3) In addition, let-¢ denote some
continuous time parameter, say 0<t<w where w is the last time point
considered for analysis; in most demographic studies, the time parameter
often represents age or duration (or seniority) since an event-origin. In
order to consider the sequence of events of transitions from one state to
another, we shall attach a subscript 7 to the time parameter (that is, #,)
denoting the timing of the n-th event. With these definitions, events n
denote changes in X{¢), the random variable ¢, is the time of the n-th
event, and the random variable X{(t,,) refers to the n-th state occupied.

What is important to note is that in many social processes, X(t) for
different ¢ can be mutually dependent. Therefore, relationships among
them assume a prominent role in stochastic analytic procedures. In fact,
stochastic processes are broadly described according to the nature of
dependence among the random variables. The basic concepts of a few
processes relevant to life history analysis are spelt out here. Mathematical
expositions are avoided as much as possible; readers who are mterested n
mathematical detail should consult texts on stochastic processes.

A Markov Model

The most commonly used stochastic process to study the timing and
sequence of events is the Markov process. If X(¢), ¢t ¢ T is a stochastic-
process such that given the value of X(s), the values of X(), ¢>s, do not
depend on the values of X(u), u<s, then the process is Markovian. This
implies a simple dependency of events — the occurrence of the event of
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interest (or, transition from one state to another) depends directly on that
of the preceding event (or state), and only on it. Such a relationship gives
rise to a conditional probability of X(¢) given X(s), the manner in which
X(s) was reached being of no consequence.

In order to simplify notations, let X(#) denote a state k and X(s) another
state j. Then, the implied conditional probability can be simply denoted by
P; ik (s,t), which is mterpreted as the probability that an individual will be
found in state k at time ¢, given that the individual occupies state j at time
s. This probability is called a state transition probability. When the state
space is discrete, the process is called a Markov Chain. If one considers
the state space to consist of the five marital states mentioned above, then
P35(29,38) would denote the probability that an individual who is presently
married at age 29 will be divorced at age 38.

In the case of Markov chains, it would be useful to note the following :

1. Inthe above definition, there is no probability attached to a single
state j or k, but to a pair of states (j,k) at two successive time
points.

2. If the probability is dependent only on the time difference (t-s),
then the process is said to be homogeneous with respect to time;
and if the probability is dependent on either s or ¢, then the
process is non-homogeneous with respect to time.

3. Two successive events lead to a one-step transition. Since life
history data contain sequence of events, these one-step transitions
can usually be obtained. We can generalize the concept to multi-
step transitions, say state j as the n-th event and state k as the
(n+m)-th event. This involves an m-step transition, and its
probability is denoted by ij(m)(s,t). However, since it is a
Markov process, each event is dependent only on the immediately -
previous event, which leads to the so-called Chapman
Kolmogorov equation.

4, Since Pir(st) is a probability, it should satisfy the following
conditions. Pj,(s,t)>0 and Zij (s,t)=1 for all j, and summing
over k. This property is called a stochastic property, and a matrix
containing such probabilities with origin states as rows and
destination states as columns is called a stochastic matrix. This
matrix has non-negative elements and unit row sums. The
following is an example of a stochastic matrix containing
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probabilities of transitions between ages 29 and 30 in a Markov
system of marital states described earlier in the text (that is, never
married=1, cohabiting=2, presently married =3, widowed=4, and
divorced=>5, with no absorbing state):

Destination
Origin 1 2 3 4 5
1 324 654 .001 .017 .004
2 0 960 003 .035 .002
3 0 406 483 010 101
4 0 661 001 330 008
5 0 322 276 .002 400

The diagonal elements are retention probabilities while the off-
. diagonal elements are transition probabilities from the origin state
~ at age 29 to the destination state before age 30.

5. Finally, a technical point: A Markov model is such that the
transition rates (or instantaneous rates) are constant across time
difference (t-s) and across individuals.  Mathematically speaking,
it is this constancy of rates which gives rise to the model’s
simplicity. The constancy of rates may be easily admitted when
the interval (z-s) is small, but becomes increasingly inadmissible
for longer intervals. In fact, the constancy of rates unphes an

- exponential distribution of timing of transitions.

The Markov model has been applied to a wide variety of social phenomena
as in labour mobility (Blumen et al., 1955), change in attitudes (Coleman,
1964), and collective violence (Spilerman, 1970) and, in more recent times, -
to the development of multistate demography (Schoen and Land, 1979;
Willekens and Rogers, 1978; Hoem and Funck Jensen, 1982). However, a
simple model rarely describes reality well, and doubts have been raised as
to whether any social process obeys the Markovian assumption at all. At
the same time, however, it has been repeatedly pointed out that the final
results of a cumbersome analysis of social processes using more complex
frameworks are not much different from those obtained with the
Markovian framework (Bartholomew, 1967). In the light of these
opposing views, what Howard (1971;4) says makes sense; that is,

No experiment can ever show the ultimate validity of the

Markovian assumption; hence no physical systems can ever be
classified absolutely as either Markovian or non-Markovian — the -
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important question is whether the Markov model is useful. If the
Markovian assumption can be justified, then the investigator can
enjoy analytical and computatmnal convenience not often found in
complex models.

A Semi-Markov Model

In line with arguments calling for more realism in life history analysis,
various extensions of the Markov model have been tried by including, for
example, population heterogeneity, time-dependence (duration, seniority
or experience), and so on. Of particular interest in analyzing life history
data is the influence of duration spent in each state before making a
transition. When the time parameter ¢ denotes duration other than age, it
becomes meaningless to hold on to the Markov model because the
distributions of waiting times in states of a Markov process are
exponential; in other words, these distributions are without memory and,
therefore, not duration-dependent (see Ross, 1983). If duration is an
important variable in an analysis, as very often it is, then the Markovian
framework has to be reformulated. Following Feller’s ideas (1950, 1966),
Mode (1982, 1985) suggested ways of defining the probabilities involved in
duration analysis directly on sample paths. Mode’s approach is preferred
to other approaches (Ginsberg, 1971; Hoem, 1972), as it easily leads to
computer algorithms for calculating the basic probabilities involved.

A semi-Markov model considers changes in states according to a Markov
chain, but allows the distribution of time intervals between successive
transitions to be arbitrary (arbitrary in the sense that the distribution can
be other than exponential; if it happens to be exponential, then the semi-
Markov model becomes indentical to the Markov model) and to depend
on the state of origin (as in a Makov chain) as well as on the state of
destination (unlike a Markov chain). Thus, the dependency of events in a
semi-Markovian framework is a modified form of a Markovian one: a
transition from one state to another depends both on the origin state and
the destination state, and on the length of duration in the origin state.

To express the above concept in stochastic terminology, we need to
consider the timing and sequence of events as follows. Let s;, i >0 be the
state in S in an individual’s sample path; and let y; be the time taken to go
from s5;.7 to 57, i >1; in other words, y; is the sojourn time (duration) in
state 5;_7. If we denote by w;=(s;,y;) the i-th transition among the states
of §, i>1, then w = (wp ,wy ,....) denotes an individual’s sample path
consisting of sequences of transitions. Note that w; is defined for i>1.
Since age is an important variable in demographic analysis, we can also
introduce wy = (sp, xg) to denote the pair describing the 0-th step, where
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xp denotes the age at which the state was entered; wy would simply mean
that an individual aged x) enters state sy, and then wy; =(s7, y7, xp)
follows as before. We shall, however, focus our attention in this paper on
sample paths without considering the age at entry into each state.
Interested readers can consult Mode (1985) for details.

Let the first n terms in such sequences be denoted by 'w(n) =(wg, wp
....... Wn ). n >9 Suppose we know the first (n-1) steps of a sample path —
that is, w is known. If we assume, on one hand, that the conditional
probability of going to state s,, in ¢ or less time units does not depend on
the number of transitions (n-I1) or the age x,_; at which an individual
enters state s,_j, then the model is called a homogeneous or age-
independent semi-Markov model. If we assume, on the other hand, that
the conditional probability of going to state s,_7 in ¢ or less time units does
not depend on the number of transitions (n-1) but depends on the age x,, 7
at which an individual enters state s,,_j, then the model is called an non-
homogeneous or age-dependent semi-Markov model. Whether
homogeneous or non-homogeneous, the semi-Markov model ignores the
number of transitions already made; that is, it ignores how the origin state
. was reached (the Markovian condition being still valid).

In a semi-Markov model, we have to consider two random variables: X,
- denoting the state entered at the n-th step and Y}, denoting the sojourn
time in state X, 7, n =1. In order to simplify notat1ons let 5,,=k and
sn_ =j. Then, we can denote the conditional probability of transition from

state j to state k in ¢ or less time units by A4, (t), which is a direct one-step
. transition probability — also called first passage probability. This is a non-
negative and non-decreasing function for every pair of states j and k in S.

From the first passage probabilities described above, one can derive other
results such as duration-stay probabilities (equivalent to survival
probabilities), mean-length of stay, and state transition probabilities.
Duration-stay ~probabilities denote the probabilities that an individual
entering a specific state at t=0 will still remain in the same state after >0
time units. It is the complement of all possible (direct) transitions from a
given state and, hence, implies no-move whatsoever in the given time
interval. The mean-length of stay in a particular state is derived from
duration-stay probabilities within a given time-interval by cumulating them
over each unit of duration. The state transition probabilities are calculated
through first passage probabilities and duration-stay probabilities. These
probabilities have been found useful in studies using the semi-Markov
model (Mode, 1985; Rajulton, 1988; Rajulton and Balakrishnan, 1990).
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A Non-Markov Model

The strategies followed in the Markovian and semi-Markovian frameworks
relied on the information on the timing and sequence of transitions. If we
are interested in the question "In what way does a sample path traced by
one individual differ from the one traced by another in its influence on the-
event under study?", then we have to consider the third aspect of life
history information; namely the number or the order of events. A model
that takes into account the history of past transitions becomes non-
Markovian.

Including past histories in a life history analysis is worthwhile in spite of
the cumbersome procedures involved. No social process obeys the
Markovian condition and no social system is without memory. On the
contrary, memory of the past pervades individual lives as well as any social
system. Even the methodological devices initially built on the Markovian
condition have been shown to be influenced by the past in further analysis
(for an example in demographic projections, see Gibberd, 1981).. There is
no doubt, therefore, that the neglect of the past leads to a biased analysis
of a social behaviour.

Past history becomes more relevant when we consider the fact that in real
situations, transitions among states in one specific system are very often
dependent on transitions among states in another system. In other words,
reality calls for a simultaneous consideration of two or more dependent
subsystems or state spaces rather than one single system or state space.
This is because no transitions are made sequentially within one system
without being influenced by those in another system. Expressed
differently, transitions among one or more systems are dynamically
interdependent; transitions in one system are mutually affected by
transitions made in the past in another system or in the same system.
Demographic examples abound. Transitions from one parity to the next
obviously depend on transitions among marital states, and vice versa. This
is similar for transitions among states of education and labour force
participation, among marital and employment states, and so on.

One of the possible ways of analyzing the mutual dependence of
transitions in two or more subsystems is to consider a system of coupled
states rather than single states (for details, see Tuma and Hannan, 1984;
chapter 9). Let us consider an example of two interdependent subsystems,
marital and parity states. We shall denote the two subsystems by S, and
Sp, and use a pair of random variables Xz, and Xp,, to denote the states
occupied at the n-th step in each subsystem. These random variables take
distinct values denoted by positive integers from 1 to SJ-, where Sj is the
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size of the state space of the j-th subsystemn, j=M or P. Elementary
principles of combinatorics suggest that the number of distinct values
which the system of coupled states can take is equal to 1I._ =M, PS
Specifically, if the random variable Xy, denotes marital status takmg
values as defined earlier, and if the random variable Xp,, takes values, say
from 0 to 4 to denote the parities, then we have a total of 5*5 = 25
different coupled states (Xpy, , Xpy,) in the system; namely (1,0), (1,1),
1,2), (1,3), (1,4), (2,0), (2,1), (2,2).... and so on. Though there are 25
different coupled states, not all of them would be meaningful, nor would
all of them be realizable; only a few would be relevant in practical
situations. For example, the first transition from (1,0), that is, Never
Married with O parity, can be only to either (1,1) or (2,0) or (3,0),
representing single parenthood, cohabitation or first marriage,
respectively. Similarly, the second transition from, say, (1,1) will be either
to (2,1) or (3,1), and so on. What is important is that the whole history is
preserved in examining the transitions involved in the newly con31dered
system of coupled states.

In practice, since it is very inconvenient to build models on non-Markovian
lines, when attempts are made to include past history, real non-Markovian
schemes are always reduced to Markovian (or semi-Markovian) ones.
Thus, in order to examine the influence of each subsystem on the other, we
can extend the semi-Markovian framework by considering coupled states
in any specific order of transition. The algorithm specified for the semi-
Markovian model holds good here too, except-that now we know how the
origin state was reached. Analogous to the definitions used in the case of
the semi-Markovian model, we shall consider the triplet (spz,, , Spy, , ¥y,) as
the state occupied by an individual at the n-th step after a duration of y,
time units in the previous state. Starting from wy=(spz0 ,5pg), we follow
an individual’s history as follows: w;=(spr7,5p7,Y1), Wo=(sp12,5P2 ¥2)s
and so on. For an illustration of an analysis which considers coupled states
in a non-Markovian set-up (but reduced to a semi-Markovian one), see
Rajulton and Balakrishnan (1990).

In a non-Markov model, when a specific transition (described by order and
sequence) is made only by a handful of individuals, transition probabilities
can become erratic and unreliable. The analyst may, therefore, have to
impose certain criteria on what is an acceptable error. In order to avoid
small numbers, it would be wise to ignore other forms of heterogeneity,
such as age at entry into the origin state, region of birth, and other
socioeconomic covariates. Limiting the number of states in each
subsystem will also be helpful.

11



Fernando Rajulton

Remarks on the Use of Stochastic Processes
The need of stochastic processes in demographic analysis is increasingly
being felt, and greater availability of life history information gives hope of
satisfying this need. A life history analysis, however, need not be restricted
to the above three stochastic frameworks. The above discussions were
focussed on the three models not only because of their possible application
in many other fields, but also because of their close resemblance to life
table techniques, the unifying framework in demographic analysis. A
computer program, LIFEHIST, which is usable on a mainframe computer
and of these three frameworks to any topic of interest, is available at the
Population Studies Centre (PSC) at the University of Western Ontario.
The procedures for using the program are explained in a manual which is
also available at the PSC.

Obviously, other stochastic processes relevant to life history analysis do
exist; for example, diffusion processes which can be very useful in
demographic research. Few attempts have been made to explore their
usefulness, even in a single state analysis (but see Casterline et al., 1987).
Diffusion processes, unlike other models, have distinct advantages which
are pointed out in the next section.

Working with stochastic processes turns out a very detailed output, as the
whole process is examined from “start" to "finish”. Instead of such a
detailed analysis, one may resort to a parametric approach to life history
analysis (as opposed to "non-parametric" approach that life tables involve).
It is possible to parametrize the observed heterogeneity in transition
probabilities obtained through the stochastic frameworks; see Mode
(1985) and Rajulton (1988) for some examples. However, the direct
parametric approach has its own advantages, especially when one wants to
consider heterogeneity and further disaggregation of a sample may not be
possible. We turn our attention to this point in the next section.

Hazard Models for Life History Analysis: Case of Heterogeneity

In spite of the accumulating literature on the so-called "determinants" of
various social behaviours, the earlier mentioned assumption that certain
characteristics of individuals and contexts affect the change process has not
been explored much. This assumption is closely related to the problem of
heterogeneity.

Characteristics (individual or otherwise) that differentiate a population are
innumerable. Age is an important factor of heterogeneity and has taken
the greatest share in demographic analysis. Apart from age, many other
time-invariant individual characteristics such as sex, race and place of birth
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as well as time-variant characteristics such as marital, employment and
education statuses can be observed. The former have often been used in
studying the differential effects on specific behaviour while the latter have
not been as well recognized by demographers. Analytical tools that make
use of observed characteristics (often expressed as covariates) have been
developed and applied in studies that assess the impact of these covariates
on human behaviour. The well-known hazard model, in its various forms
(Cox, 1972; Vanderhoeft, 1985; Menken et al., 1981; Tuma et al, 1979) is
one such analytical tool in survival analysis. Similar hazard models can be
used in analyzing life history information, even though it is difficult to see
how all the three aspects (number, timing and sequence) can be used
without much cost and inconvenience. See Tuma et al. (1979), Flinn and
Heckman (1982), and Allison (1982), for more details on this specific
topic.

While many such characteristics (whether individual or otherwise, whether
time-variant or time-invariant) can be observed and measured, many
others are neither observable nor measurable. Many unobserved and
unobservable characteristics do influence behaviour, and the idea of using
stochastic processes to estimate the effects is being explored by a number
of analysts

The awareness that a consideration of unobserved heterogeneity at an
individual level would portray reality more adequately led to the
- suggestion of including the distribution of unobservables in an analysis of
- observed characteristics. In its simplest forms, this suggestion is not totally
new to the field of social science. As early as the 1950s, Silcock (1954)
studied job mobility through a model which contained a parametric
representation of unobserved heterogeneity in transition rates; he assumed’
a gamma distribution for the rate of leaving a job. The gamma
distribution of hazards lacking measured characteristics has been found to
be very useful in many other studies (for examples see Spilerman, 1972;
Vaupel et al, 1979). Besides the theoretical reason of flexibility of a
gamma distribution to accomodate a variety of situations (especially the
unknown and the unobservable ones), it is difficult to see on what other
grounds (of explanatiom, interpretation, and generalization) a gamma
distribution should be preferred to other distributions.

Recent research has revealed that an analysis of observed characteristics is
to a certain extent subject to the assumption of the kind of distribution of
the unobservables (Heckman and Singer, 1982; Yamaguchi, 1986). The
study by Heckman and Singer was disturbing to many conscientious
researchers; it showed that conclusions can be sensitive to the choice of
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distribution of unobserved heterogeneity. Trussell and Richards (1985)
followed suit with the finding that conclusions are not only sensitive to the
choice of distribution but also to the assumption about the time-
dependence in hazard functions.

Another line of research in heterogeneity dynamics (centred at the
International Institute of Applied Systems Analysis [ITASA], Laxenburg)
showed that a mere assumption of the kind of distribution of
unobservables without an explicit consideration of the relationship that
could exist between observed rate and parameters of underlying
unobserved characteristics would lead to wrong inferences. The random
walk model of human mortality proposed by Woodbury and Manton
(1977) was developed into a more general model based on conditional
gaussian diffusion processes (Yashin et al, 1985). This more general
model covers the possibility of analyzing the effects of both the observed
and unobserved or partially observed characteristics in their multivariate
form. A greater value of the model is that it allows the inclusion of
variables that evolve over time; for example; changes in employment,
economic conditions, education and marital status are known to have their
effects on each other, as was discussed earlier in the section entitled "A
Non-Markov Model." The gaussian model’s flexibility offers a vast scope
for its application to many fields, but needs a practical algorithm as well as
empirical verifications.

Summary ‘

The review of types of analyses that are possible with life history
information covers quite a range of recent innovations in demographic
analysis. It can be said unambiguously that in dealing with life history
data, an analyst should be willing to address the following complexities of
any social process: age dependence, duration dependence, age and
duration dependence, systemic relationships, effects of time-varying
explanatory variables and inter-dependence of life history events. Not that
all these complexities can be addressed simultaneously. One can hardly do
so, but certainly it pays to be aware of them. This paper has been intended
primarily to bring into focus these various aspects of life history analysis
and to suggest viable techniques to address them.

As far as empirical applications are concerned, the above complexities can
be progressively addressed as follows:

(1) A Markovian analysis to examine the age—dependence of

transitions in a specific system,;
(2) A semi-Markovian framework to examine duration-dependence;
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(3) An non-homogeneous semi-Markov process to address both age
and duration dependence simultaneously;

(4) A parameterization of transition probabilities involved in the
semi-Markov process to account for heterogeneity;

(5) A gaussian process to examine the effects of time-varying
explanatory variables, both observed and unobserved; and finally

(6) a non-Markovian framework to examine the inter-dependence of
life history events.
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