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Some conceptions of knowledge invite the emergence of new worlds and the exploration 
of possible futures rather than attempt to reinforce stabilization and replication (Allen & 
Vargas, 2007; Osberg, Biesta, & Cilliers, 2008). The model by Mowat and Davis (2010) of 
mathematics as a “complex unity” makes such an invitation. If mathematics is a complex 
network of concepts linked by metaphors, then the understanding of mathematics 
needed by mathematicians, scientists, engineers, and students at all levels is not one of 
stationary concepts related in sequentially static order leading to the construction of a 
tower of mathematics, but a relational understanding of mathematics that privileges the 
dynamic interdependencies among and between mathematical concepts and metaphors 
and emphasizes the ways that boundaries connect as well as separate (Cilliers, 2001).  

Adoption of such a model could facilitate new understandings not only of what 
mathematics is, but also of what it means to learn mathematics. A tower is built 
sequentially step-by-step, brick by concrete, definite, solid brick; a brick is either locked 
in place or it is not, learning has either occurred or it has not occurred. But a network of 
mathematics, where concepts depend on the strength of multiple metaphors of differing 
weights and on their relationships to other concepts enables a conception of learning as 
an ambiguous and heterogeneous process in which concepts come in and out of focus 
and knowledge shifts between smoke-like and crystal-like organization (Taylor & Van 
Every, 2000). Learners need to expect learning experiences to proceed in non-linear fits 
and starts, for activities to be evolving and structuring, not pre-structured, and for 
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“components of the system [to] never quite lock into place yet never quite dissolve into 
turbulence either” (Waldrop, 1991, p. 293). In short, learning mathematics has sources of 
irreducible uncertainty. Mowat and Davis’s model of a mathematical network is useful 
in clarifying and helping us live with some of those uncertainties. 

Defining the System of Interest 

Mowat and Davis define their system of interest to be the complex unity of mathematics 
that emerges from the interaction of elements called concepts that are linked through 
conceptual metaphors. Although I was intrigued by and happy with this definition, I also 
appreciated the authors’ acknowledgement of its limitations. Deciding the level of 
analysis at which one will observe a complex system and defining the elements and 
boundaries of that system are difficult and interesting issues whether one is concerned 
with the system’s spatial or temporal aspects (Lemke, 2000; Wilensky & Resnick, 1999). 
Complications in defining a system under study arise for reasons that Mowat and Davis 
allude to: complex systems function simultaneously at multiple scales of organization 
and these maco- and micro-levels are reciprocally influencing (Hruby, 2008); complex 
systems are not composed of cleanly nested hierarchical levels, rather levels are 
interpenetrating and overlapping, making it difficult to describe a system accurately in 
terms of superior and subordinate levels (Osberg, Biesta, & Cilliers, 2008). Furthermore, 
complex systems are open to and interact with their environment, which includes other 
complex systems. Mutual influence can be enacted not only by hierarchically linked 
systems, but also between systems at parallel levels. Interacting systems can be 
constituted by the same elements and actions that play different roles depending on 
which system one wishes to consider (e.g., agent in one, environment in another). 
Finally, systems’ structures and processes shift and transform over time (Mitchell, 2006). 

The situation is further complicated for those of us who study human systems 
because human beings interact with our own constructions, our inventions, ideas and 
tools. It is difficult to decide what role different entities should take in our models of 
such systems. In my own work, I tend to take a classroom collective as the system of 
interest, one of the middle nested layers of Mowat and Davis’s Figure 1 (p. 8), and I too 
struggle with defining the system of interest. For instance, when attempting to use 
complex adaptive systems theory to understand learning from classroom computer-
mediated discourse about language and literacy (Jordan et al., 2007) my co-authors and I 
wrestled with issues such as the following: What are the learning entities that interact 
and self organize to create emergent patterns and properties? Is it the individual human 
participants or their ideas that are interacting? Although the interaction of written 
messages seems most prominent in our analysis, is this an artifact of the fact that the 
discussions were written and therefore reified? What elements of the system are 
changed over time? Messages are static once written, yet, through the interaction of 
messages emerges a conversation, and this may be regardless of who sent any particular 
message.  
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Because our interest is ultimately always in student learning, collectively and 
individually, we eventually elected to imbue students/conversational participants with 
the title, agent. However, that choice, as Mowat and Davis described their choice, is not 
without problems. For example, one of the things that emerges from classroom 
interaction is a conversation. Conversation as an emergent property does not map onto 
“individual students” as agents as cleanly as “ants” maps to “colony” or as “cars” to 
“traffic jams”. So too we would have been discontented with defining agents as 
messages or ideas, because agents in complex adaptive systems learn from feedback 
from their environment and from other agents and we were not sure how this could 
happen for messages or ideas.1 

Today I find it helpful to differentiate between complex systems and complex 
adaptive systems. Human creations (e.g., mathematical networks) can be complex 
systems but they may not be complex adaptive systems because only social entities 
learn, adapting their future behavior based on feedback they receive from interactions. 
Adaptations then feed back into the system and influence subsequent evolution. The 
complexity of human creations is dependent on social interactions that occur in human 
complex adaptive systems operating simultaneously at many levels (e.g., individuals, 
families, work groups, classrooms, schools, societies). Therefore, if we want to 
understand mathematics as a complex system we need to attend also to the human 
complex adaptive systems from which complex unities of mathematics arise. 
Mathematics emerges largely through conversation, conversation being a primary 
process through which human agents interact with one another, with our natural and 
social environment, and with our emergent creations. We - teachers, students, engineers, 
scientists, etc. - create mathematical networks through our talk. Mowat and Davis 
alluded to this several times through their examples of mathematicians’ talk.  

Taking the classroom collective as their unit of analysis, Strom, Kemeny, Lehrer, and 
Forman  (2001) used network analytic techniques to explore the development and 
structure of mathematical argument about the concept of measuring area as it emerged 
from the interactions of a group of second grade students and their teacher over the 
course of a 50-minute lesson. Students attempted to resolve contesting claims about the 
relative amount of space covered by three rectangles. Their conversation was 
contextualized by a prior activity in which the class had explored geometrical shapes 
and transformations while designing quilts.  

Whereas Mowat and Davis conceptualized mathematics as a network of concepts 
linked by metaphors, Strom et al. (2001) attempted to capture “how various senses of 
mathematics—as imagined, as performed, and as historically rooted—were interrelated” 
(p. 733), The authors identified five concepts of area measure, thirteen procedures 
related to area measure, and four references made to the class’s history with quilt 
designing that occurred at least once over the course of the lesson. Placing concepts, 

                                                 
1 However, Scardamalia and Bereiter (2006) asserted that conceptual development requires “self-
organization at the level of ideas.” “New conceptual structures… emerge through the interaction 
of simpler elements that do not singly or in combination represent the new concept” (p. 103). 
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procedures, and references to history around a circle and numbering the directed edges 
of the graph to indicate the temporal sequence of the codes, the authors created a visual 
representation of how these nodes were linked across time through conversational turns. 
Converting their representation from a directed graph to a matrix model, Strom et al. 
computed indices of the degree of connectivity between concepts, procedures and 
histories. They computed the centrality of each node, identifying, in effect, predominant 
concepts, procedures, and “prior histories” of the emergent argument, which they called 
landmarks or attractors, what Mowat and Davis might call hubs. One can imagine a 
similar analysis in which metaphors are used to link mathematical concepts to create a 
collective mathematical structure through shared discourse.  

A difficulty with using network analysis to represent complex systems is that 
network analysis techniques are better at representing structures and properties than 
they are at representing dynamics of processes (e.g., how nodes and links propagate, 
receive, and process information) (Mitchell, 2006). Complexity science leads us to 
emphasize process as the phenomenon of interest. Therefore, complexivists using 
network analysis need to be careful not to get overcommitted to the concept of structure 
that may get in the way of a rich understanding of the role of time in the development of 
the mathematical understanding. By tracing the unfolding construction of a 
mathematical network, Strom et al. studied process, describing the dynamic evolution of 
a system and looking for identifiable patterns of interaction. At the same time as the 
internal structure of a mathematical argument was made visible through the authors’ 
directed network graph, so too were the moment-by-moment dynamics of the argument, 
how the argument itself changed and also how the relationships among and between 
concepts, procedures, and history changed. An analysis such as that conducted by Strom 
et al., when coupled with our knowledge of the affordances and hindrances of particular 
metaphors that inhibit and facilitate understanding of particular mathematical concepts 
(e.g., Oehrtman 2009; Grant & Nathan, 2008) might help us do the mapping of 
conceptual metaphors linking mathematical domains that Mowat and Davis suggest is 
necessary and also a mapping of the processes by which students’ networks come into 
being, increase in robustness, and cascade into fragmentation and failure.  

Classroom Conversation as a Catalyst for Learning 

Just as it is important for researchers to be clear about how they are defining a system, so 
it is important for teachers to be clear not only about how they are defining subjects for 
study (e.g., mathematics) but also how they are defining students and classroom 
collectives. Mowat and Davis addressed the need for teachers to understand 
mathematics as a network of concepts linked by metaphors. They focused on how 
teachers could utilize knowledge of the network structure of mathematics in their 
interactions with students to support robust understandings of mathematics by 
connecting experiences (e.g., add links between clusters of nodes, introduce multiple 
metaphors, carefully select familiar source domains). In order to utilize the sophisticated 
framework and suggestions by Mowat and Davis in their intentional interactions with 
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students, teachers need to develop understandings not only of the nature of 
mathematics as complex systems, but also of classroom collectives as complex adaptive 
systems. 

It may do little good for teachers to conceptualize mathematics as a network if they 
think of that network as an expanding system in which metaphors are permanent rigid 
links between tightly bounded, closed concepts rather than thinking of a network as a 
dynamic emerging system of flexible metaphors linking permeable, fluctuating concepts, 
a system changing internally as well as growing outward. Likewise, if teachers take a 
mechanistic view of students individually and collectively, they are likely to miss the 
fact that mathematical networks are human-created tools emerging from the interaction 
of human beings in situated, unique contexts (Allen & Vargas, 2007). Because complex 
adaptive systems are generative, relational, and uncertain in their unfolding, teachers 
adopting a complexity view of classroom collectives will find it helpful to attend to 
classroom conversation as a lever for improving students’ mathematical understanding.  

Individual and collective learning are mutually and reciprocally influencing 
through interactions among connected, diverse agents. In human systems, those 
interactions occur largely through conversation, on which the generation and evolution 
of both collective and individual mathematical networks are dependent. Talk is a way of 
building linkages and making sense out of experiences and sets of experiences. 
Scardamalia and Bereiter (2006) wrote that “All understandings are inventions; 
inventions are emergent” (p.103). Ideas emerge during discussion; they are not simply 
transmitted, even if the understandings that emerge in a classroom collective are the 
same as or very similar to what others have already thought. Rather than serving 
primarily as a vehicle for sharing knowledge and critiquing ideas, conversation plays an 
active role in idea creation and idea improvement, particularly when conversation is 
oriented toward cooperative understanding. Conversation about mathematics should be 
a platform for further learning; knowing in order to learn, rather than learning in order 
to know.  

Mathematical understanding at the collective level is not simply an aggregate of 
individual mental states; nor is collective knowledge simply transferable to individual 
learners. “Cultural artifacts that become part of the “inside” of a person are much 
different than those artifacts as they existed “outside” the person… as the culture 
becomes internalized, persons change” (Ricca, 2009, p. 59). When a student hears herself 
explain an idea to others, it is possible and perhaps even likely that her thinking will be 
changed, reflected back on itself as the child juxtaposes her own explorations against the 
explorations of others (Stroup, Ares, & Hurford, 2005). Classroom conversation enables 
reflection at collective and at individual levels (Cobb et al., 1997) and reflection at both of 
these levels can prompt learning and metacognitive awareness by students of their 
individual and collective mathematical networks and of the dynamic processes by which 
those networks are unfolding. Explicit and periodic reflection on locally-emerging 
mathematical networks themselves may be particularly facilitative of learning.   

There is evidence that peer interactions can be more generative than teacher-student 
interactions during classroom conversation involving mathematics and other academic 
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subjects2 (e.g., Almasi, O’Flahavan, & Arya, 2001; Baker-Sennett, Matusov, & Rogoff, 
2008; Kapur, 2008; Nystrand, Wu, & Gamoran, 2003). However, peer interactions are a 
historically undervalued and under-utilized resource in classrooms, and “an adequate 
theory of learning through social interaction, of how to make use of personal reciprocal 
relationships is still lacking” (Mainzer, 2009, p. 24). From a complexity perspective, the 
power of peer interaction lies in the micro-diversity among students because diversity is 
required for a system to generate creative responses to a changing environment. For 
instance, if all conceptual metaphors come through the teacher, mathematical concepts 
will likely be impoverished and the robustness of mathematical networks lessened at 
individual and collective levels of understanding. However, the effects of student 
heterogeneity should be carefully observed as they can be quite different in different 
contexts, for example, sometimes heterogeneity leads to system stability and at other 
times it has a catalyzing, cascading effect (Miller & Page, 2007). Additionally, peer 
interactions do not necessarily lead to immediate returns; for example, interactions 
facilitative of improved individual learning can appear to produce failure at the 
collective level (Kapur, 2008).  

Consideration needs to be given not only to whether students are interacting, but 
also to how classroom structures constrain and enable the quality of their interactions 
and the ways it is possible for them to interact. How classroom collectives are structured 
may influence the boundaries and constraints of what can occur (Miller & Page, 2007). 
Network analysis (and other complexity-inspired models) might help us consider what 
different classroom network structures afford in terms of possible functions students 
could fulfill or create for themselves collectively and individually as they engage in 
knowledge building about mathematical networks of conceptual nodes linked through 
conceptual metaphors. 
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