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The main thesis of a recent article by Davis and Simmt (2003) is that “mathemat-
ics classes are adaptive and self-organizing complex systems”. This thesis is in-
triguing. It helps explain a phenomenon teachers often witness—the spontaneous
emergence of a special learning community in a particular class. And it raises the
question—if this thesis applies to all mathematics classes how do the additional
elements of a computer lab environment affect the evolution of the “learning sys-
tem”? In this article three technology experiences have been analyzed in light of
the thesis, to determine how software, organization, and task impact the blossom-
ing of a complex learning system in the lab-classroom.
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Introduction
Complexity theory arose from studies of mathematical processes and bio-
logical systems, but it has been applied in a variety of contexts. Recently,
researchers have begun to discuss its potential in the social sciences
(Cronbach, 1988), in education (Doll, 1989) and more specifically in math-
ematics education (cf. Davis, 2003; Davis & Simmt, 2003; Lesh, 2000).

Unlike mechanistic theories, which assume a centrally controlled gov-
erning structure, complexity theory rests on the idea that order emerges
through the interactions of organisms or agents. Analysis has shown that
systems as diverse as ant colonies, cities, and the stock market provide ex-
amples of such “bottom up” development (Johnson, 2001; Kelly, 1994). Al-
though the interactions between agents follow simple rules, complex sys-
tems are capable of innovation if they satisfy five necessary but insufficient
conditions: internal diversity, redundancy, decentralized control, organized
randomness, and neighbour interactions (Davis & Simmt, 2003).

Internal diversity refers to the idea that parts or members of a system
have different capabilities. When there is a high level of diversity, there are
more opportunities for a system to develop new and creative responses to
situations. In the classroom, internal diversity is linked to a range of pos-
sible innovations and thus to the range of experiences and skills of the agents
(Davis & Simmt, 2003, p. 148).

Redundancy is a characteristic of biological systems. Nature produces
many more organisms than necessary to ensure that enough survive. Davis
and Simmt suggest that shared vocabularies and experiences are examples
of redundancy in the classroom.

Control in complex systems is decentralized. There is no “king” who
sends out commands to every working part; instead, the response of the
system depends on the interactions of individual agents. The counterpart
in the classroom is that learning emerges from shared mathematical insights
(Davis & Simmt, 2003, p. 152). In other words, the focus of learning is nei-
ther the teacher, nor the individual.

Complex systems grow and develop within boundaries, but by random
processes—that is, they display organized randomness. In education set-
tings one might think about organized randomness by focusing on the idea
of constraints. Within the boundaries of particular tasks students can re-
spond and react with varying degrees of freedom.

Neighbour interactions, in a biological sense, concern the impact of one
organism on another and the effect of such interactions on development
and behaviour. In the classroom, neighbour interactions could be interpreted
as peer-peer interactions, but another option is to consider ideas that inter-
act or “bump against one another”(Davis & Simmt, 2003, p. 156).
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This paper aims to offer insight into how the use of lab-based technol-
ogy affects or is affected by these five conditions and to consider the ques-
tion: Can we—or how can we—nurture the development of a “learning
system” in a technology-supported environment? The three situations that
provide the data for the reflections will be referred to as: Linear Transfor-
mations, JavaSketchpad Research, and Independent Study Project. A brief
overview of each is provided.

Linear Transformations
Over a period of several years, students in my OAC Algebra and Geometry
course were assigned an in-class project on Linear Transformations.1  The
observations in this paper relate to work with the initial group. The assign-
ment required students to investigate the effects of a variety of linear trans-
formations with the spreadsheet As-Easy-As, 5.5.2  The cell addresses were
used to define the product of a transformation matrix with a matrix of val-
ues that produced a unit square. Students recorded their observations in a
table and conjectured relationships between characteristics of the transfor-
mation matrix, and the shape, orientation and area of the image. (e.g., The
orientation of the original unit square was counter-clockwise. If the deter-
minant of the transformation matrix was negative, the orientation of the
image square was clockwise.) The reader may access the entire assignment
at http://www.yorku.ca/sinclair/. The online file includes set-up instruc-
tions, assignment questions, matrices, and tabulation sheet.

In the computer lab students worked with a partner of their choice while
I circulated through the class, assisting with technical and mathematical
problems. A discussion of results was held in the regular classroom on a
subsequent day.

JavaSketchpad Research
The second technology application was my thesis research, which looked
at the benefits and limitations of using JavaSketches3  in senior mathematics.
Students in three grade 12 classes at two different schools participated in
the study. Although the students had done introductory work on deductive
geometry, none had worked with dynamic geometry software.

JavaSketchpad (Jackiw, 1998), was used to prepare four web-based, dynamic
geometry sketches for student pairs to explore during the three (or four) lab
sessions, two extra sketches for those who finished early, and one sketch for
a group discussion. The labsheet that accompanied each sketch provided
directions for opening and manipulating the sketch, a statement of the
problem, and questions related to the task. Problems chosen as the basis for
the web-based sketches were similar in difficulty to those in the student text,

http://www.yorku.ca/sinclair/
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Mathematics: Principles and Process, Book 2 (Ebos, Tuck, & Schofield, 1986) and
related to congruence and parallelism. The reader may view the sketches at:
http://www.yorku.ca/sinclair/JavaSketchpad/index.htm. Analysis of
some results is available in the following articles: The provision of accurate
images with dynamic geometry, (Sinclair, 2003a) and Some implications of the
results of a case study for the design of pre-constructed, dynamic geometry sketches
and accompanying materials (Sinclair, 2003b).

Independent Study Project
The Independent Study Project was carried out with four successive OAC
classes.4  Students were required to investigate a topic using The Geometer’s
Sketchpad (Jackiw, 1991), the As-Easy-As spreadsheet (“As-Easy-As, version
5.5,” 1993), or MapleV, (“MapleV, release 2,” 1994). The work was completed
after school and at lunch in the school’s computer lab over a period of sev-
eral weeks. I supervised and provided a number of resources. The require-
ments for the project were as follows:

During 4 timeslots in the lab, carry out one task from the following list, on the computer, with a
partner. On the last two days of class be prepared to present a three to five minute demonstration
of your findings using the computer and the overhead display. In the demonstration explain briefly
what your project is about and show how the computer program helped in investigating. Hand in an
explanation of your work (no more than 3 pages) and a disk with the animation/graph/sketch.

TASK LIST

· Use The Geometer’s Sketchpad to create tessellations.
· Use the Scripting tool in The Geometer’s Sketchpad to create the Koch snowflake and other

fractals.
· Create ellipses and hyperbolas through animation using The Geometer’s Sketchpad.
· Create and investigate the Sierpinski triangle using The Geometer’s Sketchpad or a graphics

calculator.
· Construct sine and cosine wave tracers using The Geometer’s Sketchpad.
· Examine three proofs of the Pythagorean theorem using The Geometer’s Sketchpad.
· Investigate recursive relationships using a graphics calculator.
· Investigate the GLaD construction5  using The Geometer’s Sketchpad.
· Create and investigate polar graphs with MapleV.
· Investigate graphs of planes, cylinders, and/or spheres using MapleV.
· Investigate linear and affine transformations using As-Easy-As.
· Create and investigate polar graphs on a spreadsheet.
· Use the CBL [Calculator-Based Laboratory] to collect data from a light source and determine the

equation of the resulting curve.
· Use one of the programs to explore famous curves: for example, the cycloid or the witch of Agnesi.
· Investigate the relationship between Euler’s line and the 9-point circle using The Geometer’s

Sketchpad.

http://www.yorku.ca/sinclair/JavaSketchpad/index.htm
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Observations
The following observations, clustered according to the five necessary but in-
sufficient conditions for the emergence of complexity, represent a re-exami-
nation of data from a new perspective. Since the original projects were not
designed to provide information about characteristics of complex systems,
the reflections are somewhat fragmented; nevertheless, I believe they offer
some important insights into the technology-supported classroom experience.

Internal Diversity
As noted earlier, a high level of diversity helps a system develop new and
creative responses to situations; but what does this mean in a technology-
supported classroom?

The students involved in the Linear Transformations project had com-
pleted the same mathematics courses, although mathematics achievement
levels ranged from poor to excellent. Thus, there was some level of diver-
sity with regard to mathematical skills. On the other hand, the level of di-
versity was high with respect to technological skills. Some students had
never touched a computer, while others had a moderate to high level of
experience for the time. No students in the initial group had used a com-
puter for mathematics; however, a few had used a spreadsheet to enter nu-
merical data.

The project involved the spreadsheet program As-Easy-As. Students
were expected to follow the instructions for entering information line by
line, and then to calculate various results and record these on a labsheet. At
the beginning most dutifully complied. Soon, however, a few students who
had used spreadsheets before began to experiment. Although these students
had limited experience, they were aware that spreadsheets could be made
to carry out arithmetic procedures. They soon constructed spreadsheet for-
mulas to do the required calculations, and shared their technique with oth-
ers in the class. Students had seized on the capabilities of the program and
taught themselves new procedures. In doing so, they had altered the as-
signment itself—for the better. It no longer provided extra practice at calcu-
lating dot products and determinants, but focused more effectively on de-
veloping an understanding of linear transformations.

The circumstances surrounding the JavaSketchpad research were simi-
lar in some ways. Student achievement levels in mathematics ranged from
poor to excellent; there was a wide range of technological expertise; only
one program was used (a browser to view the JavaSketchpad applets); and
students were expected to work in pairs. However, unlike As-Easy-As, which
could support a range of approaches, JavaSketchpad itself constrained stu-
dent options. The sketches could be investigated in various ways—but only
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via routes pre-planned by the sketch designer. Students could not devise
new methods as they had with the spreadsheet, nor could they spontane-
ously move in a new direction as they might have with a pre-constructed
Geometer’s Sketchpad sketch.

The design of the Independent Study Project was substantially differ-
ent. Each of the programs—Sketchpad, As-Easy-As, and MapleV, could be
used for mathematical applications at a range of levels. In addition, the
atmosphere was casual. Pairs used the lab after school or at lunch, worked
on their own topic, borrowed resources as needed from my collection (the
Internet was not available in the lab at the time), and wandered around to
see what other pairs were doing. Students shared their expertise—both
mathematical and technical, and discovered so many new possibilities that
I was quite taken aback. Students taught themselves how to generate fractals
using iteration, and to produce intricate animated tessellations; they exam-
ined visual representations of complicated algebraic and trigonometric ex-
pressions, and experimented with creating new images by tweaking those
expressions. The final presentations were quite marvelous, and the excite-
ment drew other teachers and students into the lab to watch and listen!

These examples suggest that the diversity of options within a software
program plays a part in the lab experience. It can either dampen or inten-
sify the impact of the technical and mathematical diversity of the students.

Redundancy
Redundancy supports continuity by ensuring that vital skills are distrib-
uted among many agents.  More than enough organisms are produced. More
than enough agents possess the same knowledge. In the mathematics class-
room, shared vocabularies and experiences are examples of redundancy
(Davis & Simmt, 2003).

In the Linear Transformations project, the shared algebra knowledge of
the students provided a solid basis for discussion, but the program lan-
guage caused some difficulty. As-Easy-As was a DOS program. Basic tasks
were not difficult to learn but routines were less intuitive than those of the
Windows-based programs students were beginning to use. Although some
students became quite proficient, many students wasted valuable class time
troubleshooting minor errors in formulas.

Many students in the JavaSketchpad study had an inadequate geom-
etry background and consequently, a poor grasp of geometry language. The
resultant lack of shared terminology caused communication difficulties for
some students, e.g., a student said AB, but was referring to an angle. On the
other hand, the technical “language” (i.e., the icons, menus, commands and
routines through which software and user communicate) was not a prob-
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lem because the browser interface was familiar to, or easily learned by the
students.

The students in the Independent Study Project shared a mathematics
background but had little or no knowledge of the three programs. Those
who chose Sketchpad found it intuitively easy (perhaps because the pro-
gram uses the same conventions as Macintosh and Windows software), and
rapidly moved ahead to animate sketches and create iterative designs. Al-
though students had used As-Easy-As before, they had difficulty learning
the commands to investigate topics such as polar graphs. In contrast, de-
spite the complicated and unfamiliar structure and syntax of MapleV stu-
dents became enthusiastic users. They used the Help files to teach them-
selves the syntax of the commands they needed (e.g., to solve a trig equa-
tion, or to plot a polar graph).

Many programs provide Help files that offer only definitions and cryp-
tic instructions. MapleV, on the other hand, included dozens of examples
that could be copied back to the main window and activated. Students
quickly discovered that the Help files, in addition to syntactical examples,
contained a treasure trove of incredible 2D and 3D graphs, some fully ani-
mated. Students altered the expressions to investigate what would happen.
They competed to find, or create the most beautiful, most convoluted, most
interesting plot. Some were so enthralled that they bought a copy of the
program and printed colour copies of their discoveries to adorn their as-
signment covers.

These examples suggest that shared program terminology in addition
to shared mathematical language plays a role in the development of a com-
plex learning system. Software that adopts the syntax and routines of fa-
miliar programs exploits redundancy to facilitate interactions; software that
presents an unusual interface can compensate for this deficiency by provid-
ing generous examples rather than detailed instructions.

Decentralized Control
At the time of the Linear Transformations project I was beginning to recog-
nize several conditions that affected the teacher’s control in a computer lab.
The lab layout made it difficult to move around to help students and to
ensure that they were on topic. Other important influences were: the rela-
tive independence of student pairs, and the level of complexity of the soft-
ware. Two observations are particularly relevant. First, lab-classes frag-
mented quickly. After a brief time, not only was it physically difficult to
pull the students together to summarize and share, it was conceptually diffi-
cult because students were at different stages in the activity, and it was emo-
tionally difficult because many students didn’t want to abandon their inves-
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tigation. Second, students were able to set up a math investigation using
unfamiliar software by following lines of instructions, but in some cases the
meaninglessness of the instruction sequence interfered with the develop-
ment of mathematical understanding. For example, many students who
typed entries such as A1*$D1+A2*$D2, lost track of the fact that this was a
step in finding the product of two matrices. Despite these difficulties, how-
ever, there is evidence that learning emerged from shared understanding;
the student-initiated modifications mentioned earlier helped many in the
class to move past the procedures and to focus on the visual representa-
tions.

By the time I was involved with the JavaSketchpad research, I was aware
of the need to facilitate, to provide simple directions, to ask a small number
of important questions, and to draw ideas together. I did not attempt to
micro-manage the pace of student investigation and only interrupted the
process for the class discussion. Thus, some control was effectively decen-
tralized, but how did this play out in the interchange between student part-
ners?

Listening to tapes of the student conversations I developed a new aware-
ness of the role of peers in helping one another, and in directing the course
of an investigation. Peer interventions, when properly monitored, helped
propel students towards new understanding by providing opportunities
for sharing and vetting ideas; however, in some cases the relative isolation
of student pairs in a lab set the stage for peer interventions that interfered
with the development of mathematical understanding. This finding is ech-
oed in an article by Sfard and Kieran (2001) that analyses the communica-
tion between two students. The authors call into question whether our em-
phasis on student talking as a means of developing understanding is justi-
fied. Even students paired with a knowledgeable peer can form erroneous
conclusions or fuzzy notions that go unnoticed and unchecked if students
are isolated.

In the Independent Study Project, the out of class timeslots gave “per-
mission” for distributed control, and the individual topics provided the
matter over which to exercise that control. New ideas emerged from stu-
dent interactions with one another and with the various programs. Pairs
developed expertise and taught one another both math concepts and com-
puter skills. Since students were not isolated, and because the student to
teacher ratio on most days was low, any difficulties were noticed quickly
and addressed. Although the class did not focus on a single goal, shared
understanding emerged with regard to the use of technology, and with re-
gard to the nature of mathematics; for the first time many students saw
mathematics as a creative endeavour.
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Organized Randomness
Davis and Simmt use the idea of task constraints to exemplify organized
randomness in the classroom.  They note that tasks that are proscriptive
(i.e., that tell you what you can’t do), allow more options for responding
than tasks that are prescriptive (i.e., that tell you what you must do).

Recent research into the role of “serious play” is relevant to a discussion
of how organized randomness operates in a technology-supported class-
room. Serious play is described by Reiber, Smith, and Noah (1998) as a “spe-
cial kind of intense learning experience in which both adults and children
voluntarily devote enormous amounts of time, energy and commitment
and at the same time derive great enjoyment from experience”(p. 1).

Research has shown that play motivates and engages students. With
regard to science, Stone and Glascott (1997) report that free play promotes
“curiosity and willingness to consider varying options” (p. 2). And Reiber
et al. (1998) note that games are a way of telling stories, which are funda-
mental to both understanding and learning. Nevertheless, technological ap-
plications for learning often fail to build in opportunities for play. De Castell
and Jenson (2003) state:

Technologically re-mediated curriculum so far has largely rendered edu-
cation “witless,” by eroding and finally eliminating that playfulness which
makes formal schooling an engine of intelligence rather than obedience.
(p. 49)

At the heart of ‘playfulness’ is the idea of self-direction (Reiber & Matsko,
2001). Tasks that allow students to set their own goals within broader con-
straints (i.e., proscriptive) incorporate this central idea, but the complex
environment in the lab-classroom can sometimes reshape even prescriptive
tasks.

As defined, the Linear Transformations task was quite prescriptive. Al-
though it was a novel activity in terms of the OAC Algebra and Geometry
course, students needed to set up their spreadsheet in a specific way and
answers were either right or wrong. However, in practice the task was more
flexible. The software permitted students to devise new approaches, which
broadened the nature of the task. In addition, interest in animations, and
curiosity about which matrix controlled which aspect of the shape led some
students to experiment with additional features of the program.

In the Independent Study Project there were minimal constraints. A num-
ber of programs with very different affordances could be used to investi-
gate a wide range of topics. For example, to create polar plots, students
could use a numerical approach on a spreadsheet or experiment with equa-
tions in MapleV. Students played with the programs—they were absorbed,
set their own pace, showed enthusiasm and spent time investigating pe-
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ripheral topics that caught their interest. In many cases the students ex-
plored topics that were well beyond the curriculum.

They developed:

  • Tessellations that waved!
  • Intricate polar graphs
  • Fractal trees and designs

Along with the visuals the students gave competent explanations of the
mathematics.

As designed, the JavaSketchpad tasks fell somewhere between proscrip-
tive and prescriptive. All tasks were designed to allow students to think
about the mathematics using both traditional Euclidean methods and sym-
metry concepts, but these options were set by the sketch designer and stu-
dents could not freely decide on a course of action. However, in practice,
since students had not used computers to explore mathematics, the tasks
did engage students and provided opportunities for them to set and modify
goals—in a limited setting.

The following excerpts illustrate two different types of play that were
observed in the JavaSketchpad study: play to explore new possibilities, and
play to investigate a question. In the first example Sue and Paul, two above-
average students, jabbed at the screen as they referred to items; however,
they didn’t leave the sketch static. They continued to play with the sketch
and explore new possibilities.

Paul: GBH is congruent to GCH because angle, angle, given, common,
common

Sue: So wait a second. Side, side—no side, angle, side
Paul: Angle B and angle C are equal and then H is the midpoint…. It’s

the right bisector too

Other students played to investigate a particular question—and actually called
it “play” as seen in this quote:

Sarah: I feel obligated that there must be 3 pieces of information given.
Let’s play with it and maybe we’ll see.

These examples suggest that there is a strong incentive to ‘play’ in a techno-
logical environment. If so, organized randomness will be a characteristic of
a lab-class as long as the task is engaging and the software allows students
to set and modify their own goals.

Neighbour Interactions
Davis and Simmt propose that we consider the interactions of ideas when we
examine complex learning systems in education; this section will focus on the
conditions in which those interactions take place within the lab environment.
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Peer-peer

When students work in pairs on computer activities, exchanges between
partners are central. Teasley and Roschelle (1993) maintain that the part-
ners construct a Joint Problem Space. They note:

We propose that the fundamental activity in collaborative problem solving
[in a computer environment] occurs via the students’ participation in the
creation and maintenance of a JPS. (p. 229)

Although students collaborating without computers may construct such a
space, I contend that the relative isolation of students in a lab, caused to
some degree by the configuration of furniture, supports the development
of a strong link between student partners—for better or for worse.

The Linear Transformations project was an early lab experience for me.
I did not permit students to move around and work with other pairs. Addi-
tionally, the layout of the lab, the paucity and inaccessibility of board space,
and the poor quality of the overhead monitor (an old television) made it
difficult to share results in the lab, and limited students’ opportunities to
take advantage of the range of skills within the class. Nevertheless, some
interactions did occur between pairs clustered in the same area, and stu-
dent-invented modifications spread on a small scale. By the second day,
students in other parts of the class had learned the new methods and were
busy passing on their expertise.

For the JavaSketchpad research, students were strongly linked to their
partners. Interactions with other pairs were less frequent. As noted earlier in
the discussion of decentralized control, partner interactions were sometimes
beneficial and sometimes detrimental to the growth of understanding.

In the Independent Study Project students were strongly linked to their
partner, but also interacted frequently with other student pairs. This sec-
ondary relationship acted as an error check and allowed students to try out
their ideas on a local audience before the presentation.

These observations suggest that physical conditions can affect the ex-
change of ideas and in turn support or prevent the emergence of shared
mathematical insight.

Task interactions

Equally important in lab classes are the interactions between a student pair
and the task, and between task questions and the affordances of the com-
puter program.

The JavaSketchpad research showed that the relationship between stu-
dent pairs and a computer-based task is affected not only by the subject
matter (i.e., topic, difficulty level), but also by the way in which the prob-
lem and accompanying questions are presented. The task itself steps into
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the learning space through its prompts and questions. To support the growth
of mathematical understanding the questions must invite students to ex-
plore, and the instructions must model the use of terminology and encour-
age students to explain their reasoning.

A task also intervenes through the pre-constructed sketch or the com-
puter object that students create. Results of the JavaSketchpad research sug-
gest that this image is most effective if it generates surprise. I believe the
success of the Linear Transformations project, despite the heavy setup de-
mands, was related to students’ surprise at seeing the result of each trans-
formation. Their delight fueled their curiosity, which led them to search for
explanations. Each Independent Study Project was different, however, again,
surprise at the visual rendition of a mathematical idea was a crucial factor;
in many cases it led students to embark on extensive research, and to ac-
quire new technological skills.

These results provide evidence that the visual and kinesthetic features
of computer applications can stimulate the “bumping” of ideas. At the same
time, analysis of the JavaSketchpad research data showed that failure to
address the relationship between task question and software affordance can
hamper the development of new ideas by leaving students confused and
frustrated (Sinclair, 2003b). At the most basic level, if students are prompted
to carry out a particular action (e.g., drag vertex A and observe the change
in the perimeter of ABCD) the sketch must provide several affordances—a
dragging tool, a movable quadrilateral, and an updatable measure. If a ques-
tion introduces uncertainty or surprise the sketch must support student
experimentation (i.e., it must provide students with the means to satisfy
their curiosity about the result). Four simple but important criteria for link-
ing task question and sketch affordance are listed in Table 1.

Purpose of Question JavaSketch must

Focus attention Draw attention

Prompt action Provide affordances

Invite exploration Provide alternate paths

Introduce uncertainty Support experimentation

TABLE 1. Question/Sketch interplay
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Conclusions
Complex systems are adaptable, evolvable, resilient, boundless, and novel
(Kelly, 1994). However, Kelly points out that such systems are also
nonoptimal, noncontrollable, nonpredictable, nonunderstandable and
nonimmediate. If our mathematics classes are complex systems we must
develop methodologies that allow us to take advantage of the good quali-
ties. The first step is to focus our attention on evidence from practice.

This paper examined three examples of mathematics classes with re-
spect to five conditions that Davis and Simmt (2003) identify as necessary
but insufficient for the development of a complex system that is able to
learn. The analysis suggests that diversity, redundancy, distributed control,
organized randomness, and neighbour interactions were present to vary-
ing degrees but were affected in the lab-based environment by:

  • Lab configuration;
  • Program ease of use and/or depth of options;
  • Task design;
  • Student opportunities to share knowledge with peers, and to commu-

nicate with the teacher

In the Linear Transformation project and in the JavaSketchpad study
there were some indications that tentative understandings were beginning
to emerge. For example, the affordances of As-Easy-As enticed some stu-
dents to move beyond the constraints of the assignment, and the visual
impact of the spreadsheet images and the geometry applets encouraged
students to play and explore. However, neither of these situations epito-
mized an emergent learning system.

The Independent Study Project satisfied all the conditions. The diver-
sity of math skills, technical skills, and computer affordances supported
exploration and analysis. The familiar conventions of Sketchpad, prior ex-
perience with As-Easy-As, and the MapleV help files, coupled with shared
mathematics basics supplied enough redundancy in the system to support
communication. The tasks were proscriptive. Each encouraged investiga-
tion and open-ended question posing. The free interactions between pairs
allowed the sharing of mathematical and technical expertise, and the de-
velopment of innovative ideas. In addition, the out of class timing damp-
ened the negative effects of a cramped lab space. Learning flourished as the
classes ‘gelled’.

Observations of the Independent Study Project groups suggest that a
structure allowing for sharing, play, and individual choice, that involves
activities based on broadly applicable and adaptable software can result in
the emergence of a beneficial complex learning system in a technological
environment.
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Endnotes
1. The assignment was originally designed by mathematics teacher and researcher,

Ysbrand de Bruyn.
2. In later years students used Microsoft Excel. (“Microsoft Excel, version 5,” 1993).
3. JavaSketches are html versions of sketches created in The Geometer’s Sketchpad and

then saved using JavaSketchpad. A JavaSketch behaves differently than its Geometer’s
Sketchpad counterpart. In the non-web sketch, independent points can be moved
anywhere, and other points, lines and line segments can be translated by dragging;
however, in the web version, only independent points can be dragged. Although
action buttons can be included to hide/show or animate, the applets cannot be
edited. At present some geometric details (e.g., rays) are not supported in the web
version.

4. OAC refers to Ontario Academic Credit. OAC courses were University prepara-
tion courses taken in the 4th or 5th year of high school. These courses were discontin-
ued in 2002.

5. Proof using Sketchpad of a method to divide any line segment into a regular parti-
tion of any number of parts. See - Dietrich, C. H., Litchfield, D. C., & Goldenheim,
D. A. (1997). Euclid, Fibonacci, Sketchpad. Mathematics Teacher, 90(1), 8–12.
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