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ABSTRACT - The cosolvency models presented 
from 1960 to 2007 were reviewed and their 
accuracies for correlating and/or predicting the 
solubility of drugs in water-cosolvent mixtures were 
discussed. The cosolvency models could be divided 
into theoretical, semi-empirical and empirical 
models, the first group of models provide basic 
information from the solution, while the last group 
of models are suitable for solubility correlation 
studies. The simplest cosolvency model, i.e. the 
log-linear model of Yalkowsky, provides an 
estimate of drug solubility in water-cosolvent 
mixtures using aqueous solubility of the drug, 
whereas the Jouyban-Acree model predicts the 
solubility with an acceptable error with the cost of 
one more data point (the solubility in neat 
cosolvent) which is required as input value in the 
prediction process. A number of error terms used in 
the literature was also discussed with a brief 
comments on the acceptable prediction error for 
pharmaceutical applications. 

 
INTRODUCTION 
 
The knowledge of solubility is important in the 
pharmaceutical area, because it permits the scientist 
the choice of the best solvent medium for a drug or 
combination of drugs, and helps in overcoming 
certain difficulties arising in the preparation of 
pharmaceutical solutions. These solutions could be 
used to test the purity of bulk drugs, to prepare a 
liquid dosage form and/or to extract an ingredient 
from a synthetic mixture or a natural source. A 
detailed investigation of the solubility phenomenon 
and related properties also yields useful information 
about the structure and intermolecular forces of 
drugs. The solubility of a drug depends on the 
physical and chemical properties of the drug and the 
solvent including the polarity, dielectric constant, 
autoprotolysis constant of the solvent (pKs) and 
also factors such as temperature and pH of the 
solution. Water is the main solvent and the aqueous 
solubility is one of the most important properties of 

a drug molecule. The drugs are often low soluble in 
water and their solubility should be increased. A 
comprehensive database of aqueous solubility data 
of chemicals and pharmaceuticals was collected by 
Yalkowsky and He (1). There are several methods 
to enhance the aqueous solubility of the drugs 
including cosolvency, hydrotropism, complexation, 
ionisation and using the surface active agents. 
These methods were discussed in details (2). 

The cosolvency, mixing a permissible non-
toxic organic solvent with water, is the most 
common technique to increase the aqueous 
solubility of drugs. The common cosolvents which, 
are used in the pharmaceutical industry are ethanol, 
propylene glycol, glycerine, glycofural and 
polyethylene glycols (3). Their applications and 
possible side effects were discussed in the literature 
(as examples see 4-8). The cosolvency phenomenon 
has wide ranging applications in different fields. In 
addition to applications in drug formulation, 
solubilizing agents like tert-butyl ether were used 
clinically to dissolve cholesterol gallstones (9). 
From the environmental scientist’s viewpoint, the 
cosolvency is an important subject, because the 
organic solvents can change distribution and 
movement of hydrophobic contaminants in the 
environment (10). The solubility behaviour of a 
solute in mixed solvents provides some theoretical 
basis for the chemist. From this, it is possible to 
collect some ideas about solute-solvent and solvent-
solvent interactions in the solution. 

Cosolvency of non-aqueous solvent 
mixtures is also important from a pharmaceutcial 
viewpoint, since the mixtures could be used as 
synthesis medium or re-crystalisation solvents for 
purification of drugs. 
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The addition of a cosolvent to the aqueous solution 
can also affect the chemical stability of the drug 
(11), acid dissociation constants of the solute, 
viscosity and surface tension of the solution which 
should be kept in mind in pharmaceutical 
applications of the cosolvents. The aims of this 
work is to review the available cosolvency models, 
their prediction capabilities and also the error 
ranges of the predicted solubilities in the 
pharmaceutical areas. The basic models and their 
new extensions were discussed along with the 
available accuracy test of the models. 
 
REVIEW OF COSOLVENCY MODELS 
 
Apart from experimental determinations of solute 
solubility in water-cosolvent mixtures, there are 
many mathematical models describing the solute 
solubility in mixed solvents (12-23). By considering 
chemical theory, some of them are theoretical and 
some others are semi-theoretical or empirical. 
Theoretical models provide some evidence for 
better understanding of solubility behaviour for 
drugs in mixed solvents, while semi-theoretical or 
empirical approaches are very useful models for 
correlating experimental solubilities to the 
independent variables such as volume fraction of 
the cosolvent. 

From a practical point of view, one can 
categorise these models into two groups, i.e. 
predictive and correlative models. The predictive 
cosolvency model means that the model is capable 
of predicting the solubility of a drug in mixed 
solvents by using no experimental solubility data 
(pure or fully predictive model) and/or using one or 
two solubility points as input data. The correlative 
cosolvency model means that the model provides 
good correlation between the solubility of a drug in 
mixed solvents and the independent variables like 
cosolvent concentration or physico-chemical 
properties of the solutes or cosolvents. The 
advantage of the predictive models such as 
universal functional group activity coefficient, 
UNIFAC, (24) is that these models do not employ 
any experimental data points. However, the low 
prediction capability of the UNIFAC model for 
biphenyl solubilities in several binary mixed 
solvents (as a simple model system) has been 
reported (25). In addition, these methods usually 
require a number of physico-chemical properties of 
drugs and relatively complex computations and are 
not more favourable methods in pharmaceutical 
area. The correlative equations, such as the general 

single model (22), employ the curve-fitting 
parameters to correlate experimental solubility data 
with respect to the concentration of the cosolvent. 
In order to calculate these curve-fitting parameters, 
one has to determine a set of experiments in mixed 
solvents to train the model. From a practical point 
of view, a model containing a minimum number of 
the curve-fitting parameters is the best cosolvency 
model.  

The final goal of developing cosolvency 
equations is that it enables researchers to predict the 
solute solubility in mixed solvents from a minimum 
number of experiments or even without 
experimental data. It has been shown that solubility 
prediction in binary solvents using correlative 
equations can fail when using insufficient 
experimental data points and produces unacceptable 
errors (22). On the other hand, Bustamante and co-
workers (26) employed a modified form of the 
extended Hildebrand solubility approach to 
correlate structurally related drugs solubility in 
binary solvent mixtures. The authors used the solute 
solubility in water and cosolvent, the solute’s 
solubility parameter, the Hildebrand solubility 
parameter of the solvent and the basic solubility 
parameter of the mixed solvent as independent 
variables. This approach was a useful solution to 
the solubility problem of similar chemically solutes. 
The applicability of the Jouyban-Acree model for 
reproducing solubility data of structurally related 
drugs in binary solvents was presented (27). It was 
also shown that the prediction error of the Jouyban-
Acree model is less than that of the modified form 
of the extended Hildebrand solubility approach 
(27). 
 
HILDEBRAND SOLUBILITY APPROACH 
 
A solution obeying Raoult’s law is known as an 
ideal solution and its solubility could be calculated 
from the heat of fusion of the solute ( f

mHΔ ) and the 
differenec in the heat capacities of this solid and of 
its supercooled liquid ( pCΔ ) using Hildebrand and 
Scott equation expressed by: 
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where X is the mole fraction solubility at 
temperature T, Tm is the melting point of the solute, 
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s
p

l
pp CCC −=Δ  where l

pC  and s
pC  are the molal 

heat capacities of the liquid and solid forms, 
respectively. For regular solutions, the equation was 
modified as: 
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in which sV  is the molar volume of the solute, mφ  
is the volume fraction of the solvent, mδ  and sδ  
are the solubility parameters of the solvent and 
solute, respectively. Although Hildebrand restricts 
the application of the model to nonpolar solvents, 
Chertkoff and Martin (12) used the model for 
calculating the solubility of benzoic acid in binary 
mixtures of hexane, ethyl acetate, ethanol and 
water. These mixtures provided wide polarity range 
of solvent from 7.3 H (for hexane) to 23.4 H (for 
water) and the maximum solubility of benzoic acid 
was observed in mδ =11.5 H (H: Hildebrand unit, 1  
 

H= 1 
2
1
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cal

= 0.489 MPa½). 

 
The numerical values of mδ  of binary solvents 
were calculated using 2211 δδδ ffm +=  in which 

1f  and 2f  are the fractions of solvents 1 
(cosolvent) and 2 (water), 1δ  and 2δ  are the 
solubility parameters of the solvents 1 and 2. This 
equation could be rearranged as a linear relationship 
by replacing 2f  with 11 f−  as 

( ) 112121 fslopeInterceptf ⋅+=−+= δδδδ . On 
the other hand, all terms of equation (2) are constant 
values for a given solute at a fixed temperature 
except than mδ , therefore, the equation could be 
converted as a simple linear relationship of 

1log fslopeInterceptX ⋅+=  (22). This model 
was used by Yalkowsky et al. and was called log-
linear model. 
 
 

SOLUBILITY – DIELECTRIC CONSTANT 
RELATIONSHIP MODEL 
 
Paruta and co-workers tried to correlate the 
solubility of salicylic acid as a function of dielectric 
constant (ε ) of the solvent mixture (13) where ε  
values were determined using a resonance method. 
As shown in Figure 1, the model predict the 
maximum solubility of the solute in binary solvents, 
however, there are different observed solubilities 
for a given ε  value. This means that the dielectric 
constant can not adequately represent the solvent 
effects on the solubility of solutes. 

This apporach was employed later on as a 
polynomial of ε  values to correlate the logarithm 
of solubilities in mixed solvents (28). The 
numerical values of the mε  were calculated using 

2211 εε ff +  (29) which is not correct calculations, 
since there is a non-linear relationship between 
experimental mε  and 1f  values as was shown in a 
paper (30). However, the main reason for the 
accurate correlation of the mXln  using mε  
polynomial is that the polynomial could be arranged 
as a polynomial of 1f  values by simple algebraic 
manipulations (31). 
 

 
 
Figure 1. Plot of solubility of salicylic acid at 30.6 °C in 
binary mixtures of benzene with ethanol (A), methanol 
(B), 1-propanol (C), 1-butanol (D) and binary mixtures 
of dioxane with ethanol (E), methanol (F), 1-propanol 
(G), 1-butanol (H), (Reproduced from a reference (13)). 
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THE LOG-LINEAR MODEL OF 
YALKOWSKY 
 
The algebraic mixing rule (15) or log-linear model 
which is expressed by: 
 

2211 logloglog XfXfX m +=  (3) 
 

where mX  is the mole fraction solubility of the 
solute, 1X  and 2X  denote the mole fraction 
solubility in neat cosolvent and water, respectively. 
The model could be rearranged as: 
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Equation (4) is a correlative model, however, it has 
been demonstrated that a log-linear relationship 
between the solubility of a non-polar solute and the 
fraction of the cosolvent exist as (15): 
 

12loglog fXX m ⋅+= σ  (5) 
 

where σ  is the solubilization power of the 

cosolvent and theoretically is equal to ⎟⎟
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Valvani et al. (32) reported a linear relationship 
between σ  and logarithm of drug’s partition 
coefficient ( owKlog ) which is a key relationship 
and could improve the prediction capability of the 
log-linear model. The relationship was expressed 
as: 
 

NKM ow +⋅= logσ   (6) 
 
where M and N are the cosolvent constants and are 
not dependent on the solute’s nature. The numerical 
values of M and N were reported for most of the 
common cosolvents earlier (33) and summarized in 
Table 1. This version of the log-linear model could 
be considered as a predictive model and provided 
the simplest solubility estimation method and 
requires the aqueous solubility of the drug and its 
experimental/calculated logP value as input data. 
Updated M and N values for ethanol (0.93, 0.40), 
propylene glycol (0.77, 0.58), polyethylene glycol 

400 (0.74, 1.26) and glycerol (0.35, 0.26) were 
reported by Millard et al. (34) employing published 
data and the data selection criteria of: a) adequate 
time for equilibration (24 h) or test for 
equilibration, b) room temperature, i.e. 22-27 °C, 
experiments and c) at least duplicated experiments. 
These slight variations of M and N values could not 
affect the prediction capability of the log-linear 
model as shown in a recent work (35). 

With the known values of M and N along 
with the owKlog  of a drug, it is possible to predict 
the cosolvent concentration for solubilization of the 
desired amount of the drug employing only the 
experimental aqueous solubility data (34). This 
prediction method produces average absolute error 
(AAE) of ~ 0.5 (in log scale) for the solubility of 
drugs in water-ethanol mixtures and could be used 
employing experimental values of owKlog  or 
computed values using various software (35). The 
AAE of ~0.5 (for 26 data sets reported in the 
reference (35) is equal to the MPD of ~ 300 % 
(Unpublished results). The MPD values are defined 
similar to the relative standard deviation (RSD) and 
could be compared with the RSD of the solubilities 
from the repeated experiments. The produced 
MPDs is relatively high when compared with the 
experimentally determined RSD values (usually < 
10%) and acceptable percentage error range (~ 30 
%) in pharmaceutical area (36-37), however, the 
method is strightforward and easy to use and 
employs only aqueous solubility data of the drug 
(one data point). 

Li (38) extended the log-linear model using 
the activity coefficients of water and cosolvent 
computed by UNIFAC method. The most accurate 
extended model of Li was: 

⎟⎟
⎠
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++⋅+=

2

1
1212 lnlnloglog

α
α

φασ fXX m   
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Where 2α  and 1α  are the activity coefficients of 
solvents 2 (water) and 1 (cosolvent) in the mixture, 

1φ  is the mole fraction of the cosolvent in the 
binary solvent mixture in the absence of the solute. 
Li compared the accuracy of the extended model 
with the log-linear model using average error of 
prediction (AEP) calculated by: 
 



J Pharm Pharmaceut Sci (www. cspsCanada.org) 11 (1): 32-58, 2008 
 
 

 
 

36 

N

XX
AEP

Observed
m

Calculated
m∑ −

=
loglog

 

           (8) 
 

Table 2 listed the AEP of the log-linear and the 
extended model for the predicted solubilities of 
various solutes dissolved in 13 different water-
cosolvent mixtures. This extension was improved 
the prediction capability of the log-linear model for 
7 of the 13 cosolvents (38). 

The solubilities in mono-solvents, i.e. 
1log X  and 2log X (aqueous solubility), could be 

calculated using: 
 

( )
i

isolvent
olOc

f
i CP

mpS
X +−

−Δ−
= tanlog

1364
25

log   

(9) 
 

where fSΔ  is the entropy of fusion, mp is the 

melting point of the drug, 
isolvent

olOcP tan  is the octanol-

solvent i prtition coefficient of the solute and Ci is a 
constant which is depend upon the unit of the 
solubility (39). The accuracy of the full predictive 
version of the log-linear model where 2log X  
calculated using equation (9), has not been reported 
in the literature. 

The solubility profile of drugs are often 
linear up to =1f 0.5 and it has been shown that the 
log-linear model could be modified as: 

 
15.02loglog fXX m ⋅+= σ   (10) 

 
which provides more accurate predictions and is 
more practical in pharmaceutical area since most of 
the cosolvents employed in <1f 0.5 (8) 
concentrations. There are also linear relationship 
between 5.0σ  and owKlog  of the solutes and 
summary of the M and N values were listed in Table 
1. 

The main assumptions on which the log-
linear model is based are as follows: a) the free 
energy of transferring a solute to an ideal solvent 
mixture is the sum of the corresponding energies in 
pure solvents, b) the solvent molecules behave in a 
mixture the same way as they do in neat solvents, c) 
the ratio of the solvent and cosolvent surrounding a 
solute molecule is the same as volume fraction of 

the solvents in the mixture, d) the molar volume of 
solute in the solution is not so different from the 
molar volumes of the solvent and cosolvent, e) no 
degradation, solvation or solvent mediated 
polymorphic transitions of the solute occur (40). 
However, since most of these assumptions are not 
applicable to the solubility of drugs in aqueous 
binary mixtures, the model produces relatively large 
deviations from the true experimental data (see 
reference 22). 
The model was extended to the ternary solvents 
(41) as: 
 

33210332211 loglogloglog fBfBBXfXfXfXm ++=++=
(11) 

 
and for quinary mixtures (42-43) as: 

 
1 1 2 2 3 3 4 4

0 1 2 2 3 3 4

log log log log logmX f X f X f X f X
B B f B f B f

= + + +
= + + +

 

 (12) 
 

where X3 and X4 are the solubilities in neat solvents 
3 and 4 and the f terms denote the fractions of the 
solvents in the mixture. The general form of the 
log-linear model for multicomponent solvent 
systems could be written as: 
 

∑+= iim fXX σ2loglog   (13) 
 

where iσ  and if  are the solubilization power and 
the fractions of cosolvent i (38). 
 The accuracy of the log-linear model and 
its extended version for calculating the solubilities 
in ternary and quinary solvents were tested using 
three solubility data sets for each solvent systems. 
The overall AEP of the log-linear and the extended 
model for ternary solvents were 0.247 and 0.203, 
respectively and the corresponding values for 
quinary solvents were 0.330 and 0.268 (38). 
 
EXTENDED HILDEBRAND SOLUBILITY 
APPROACH 
 
By the extended Hildebrand solubility approach 
(EHS), Martin and coworkers (14) extended the 
applicability of the regular solution theory to the 
solubility of drugs in water-cosolvent mixtures by 
avoiding Hildebrand’s geometric assumption for the 
interaction term.  
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In the original Hildebrand equation the 
solute-solvent interaction term is assumed equal to  
(δm × δs) in which δm and δs are the solubility 
parameters of mixed solvent and solute, 
respectively, and the model can describe the regular 
behaviour of the solution. Instead Martin’s group 
used an empirical solute-solvent interaction 
parameter (WW). This modification widened the 
applications of the model to semi-polar crystalline 
drugs in irregular solutions involving self-
association and hydrogen-bonding, such as occurs 
in polar binary mixtures. Using the EHS model, the 
co-logarithm of the mole fraction solubility 
( mXlog− ) can be expressed as: 
 

( )
RT

WWVXX smmsi
sm 303.2

2loglog
222 −+

+−=−
δδφ

 

(14) 
 
where Xs

i denotes the ideal mole fraction solubility 
of the solute, Vs is the molar volume of the solute, 
φm represents the volume fraction of the solvent in 
solution and because of very low solubility of the 
solute it can be assumed equal to 1 (29, 44-46), R is 
the molar gas constant, T denotes absolute 
temperature and WW is the interaction term whichis 
calculated by a power series of δm: 
 

 

∑
=

=
p

i

i
miAWW

0
δ  (15) 

 
where Ai denotes the curve-fit parameter and δm is 
calculated by using equation (16): 
 

2211 δδδ ffm +=  (16) 
 
in which δ1 and δ2 are the solubility parameters of 
pure cosolvent and water, respectively (26). 
However, in order to obtain an estimation of ideal 
solubility based on experimentally determined 
entropy or enthalpy of fusion, a sophisticated high 
cost instrument, such as a differential scanning 
calorimeter is required for the measurements. In 
addition to the experimentally measured ideal 
solubility, solution density and an estimation of 
physical parameters of Vs and δs are required. All 
are essential to calculate solute solubility by the 
EHS equation. In addition, the dependence of δs 
values on solvent polarity restricts the applications 
of EHS for predictive purposes (27). 
 The model was modified to directly relate 
the solubility to the solubility parameters of the 
solvent mixtures (26, 36, 47) as: 
 

n
mnmmmm CCCCCX δδδδ +++++= L3

3
2

210log
(17) 

Table 1. Numerical values of M and N of common cosolvents for 
calculating the slope (σ ) and half-slope ( 5.0σ ) of the log-linear 
model (33). 
 σ  

5.0σ  
 M N M N 
Acetone 1.14 -0.10 1.25 0.21 
Acetonitrile 1.16 -0.49 1.04 0.44 
Butylamine 0.64 1.86 0.67 3.83 
Dimethylacetamide 0.96 0.75 0.89 1.28 
Dimethylformamide 0.83 0.92 0.65 1.70 
Dimethylsulphoxide 0.79 0.95 0.72 0.78 
Dioxane 1.08 0.40 0.99 1.54 
Ethanol 0.95 0.30 0.81 1.14 
Ethylene glycol 0.68 0.37 0.52 0.28 
Glycerol 0.35 0.28 0.38 0.14 
Methanol 0.89 0.36 0.73 0.70 
Polyethylene glycol 400 0.88 0.68 0.78 1.27 
1-Propanol 1.09 0.01 1.03 1.76 
2-Propanol 1.11 -0.50 0.96 1.00 
Propylene glycol 0.78 0.37 0.55 0.87 

Table 2. The average error of prediction (AEP) and standard 
deviation (SD) of various models for calculating the solutes 
solubility in the common cosolvents and their overall values 
taken from a reference (38) 
  Log-linear Extended 

log-linear 
Cosolvent Na AEP SD AEP SD 
Acetone 220 0.306 0.303 0.246 0.310
Acetonitrile 103 0.416 0.284 0.208 0.256
Dimethyl sulfoxide 131 0.186 0.253 0.316 0.311
Dimethylacetamide 97 0.263 0.312 0.412 0.357
Dimethylformamide 133 0.216 0.260 0.221 0.262
Dioxane 349 0.608 0.334 0.386 0.295
Ethanol 1631 0.328 0.379 0.261 0.357
Ethylene glycol 111 0.186 0.148 0.265 0.164
Glycerol 124 0.096 0.119 0.095 0.117
Methanol 688 0.274 0.375 0.280 0.371
1-Propanol 116 0.570 0.397 0.356 0.336
2-Propanol 188 0.413 0.413 0.291 0.366
Propylene glycol 503 0.193 0.295 0.212 0.292
Overall  0.318 0.392 0.269 0.362
a N is the number of data points. 
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where C terms are the curve fitting parameters. 
Using this modified version there are no need for 
experimental determination of ideal solubility of the 
solute and other terms required in the extended 
Hildebrand solubility apaproach (26). This 
polynomial, i.e. equation (17), was coverted to the 
GSM using simple algebraic manipulations (22). 
This version of the EHS is a correlative model and 
did not provide accurate predictions. 
 An extended version of Martin’s EHS 
model was proposed for describing the multiple 
solubility maxima of solutes in solvent mixtures 
where the WW term was correlated with a power 
series of the solvent compositions. This extension 
was applied to describe the multiple solubility 
maxima of five drugs in water-ethanol and ethanol-
ethyl acetate mixtures with the mean percentage 
deviation (MPD) of ~ 11 % (48). 
 
THE WILLIAMS-AMIDON MODEL 
 
The excess free energy models of Williams-Amidon 
(16) are expressed by: 
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(20) 
 

where A1-2, A2-1, Cs, D12, C2 and C1 are solvent-
solvent or solute-solvent interaction terms, V1 and 
V2 represent the molar volumes of  cosolvent and 
water, respectively (16). The molar volume 
differences between solvent, cosolvent and solute 
are considered as the V terms. The solvent-
cosolvent interaction constants (D12 and A terms) 
are obtained from vapour-liquid equilibrium data. 
Williams and Amidon (16) reported different values 

of A for two-suffix (equation (18)), three-suffix 
(equation (19)) and four-suffix (equation (20)) 
excess free energy models with respect to a given 
binary solvent system. This fact is due to different 
definitions of the A terms in the three equations. 
The solute-solvent interaction terms are estimated 
from experimental solubility data. This model is 
able to improve the predictability of the log-linear 
model by employing additional terms. The excess 
free energy models were also extended to express 
the solubility of drugs in ternary solvent mixtures 
(49). These models could be considered as 
predictive models and require solubilities in neat 
solvents and one datum in mixed solvents as input 
data to provide predictions. 
 Equations (18)-(20) can however be 
simplified to the following forms (50): 
 

log Xm = f1 log X1 + f2 log X2 + α1f1f2     (21) 
 

log Xm = f1 log X1 + f2 log X2 + α'1f1f2 + α'2f1
2f2 

(22) 
 

log Xm = f1 log X1 + f2 log X2 + α"1f1f2 + α"2f1
2f2 + 

α"3f1f2
2 + α"4f1

2f2
2 

 (23) 
 

where α1=[A1-2(Vs/V1)], α'1= [A1-2(Vs/V1)+ C2], 
α'2= 2[A2-1(Vs/V2) – A1-2(Vs/V1)], α"1= [A1-2(Vs/V1)], 
α"2 = 2[A2-1(V2/V2) – A1-2 (Vs/V1)] + C1(Vs/V1) , 
α"3=C3(Vs/V2) and α"4= [3D12(Vs/V2)]. 
 
Equation (22) was extended for mathematical 
representation of solubility data of drugs in binary 
solvent mixtures at various temperatures using: 
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where W1 and W2 are the model constants 
representing the solute and solvents 1 and 2 
intereactions. The model was trained using a 
minimum number of five experimental solubility 
data points of oxolinic acid at 20 and 40 °C, then 
the solubility of the solute in binary mixtures of 
ethanol with water and ethyl acetate at 20-40 °C 
were predicted. The overall average relative error 
(ARE) was ~ 8 % (51). The accuracy of the 
extended excess free energy model was also 
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checked using 7 solubility data sets at various 
temperatures collected from the literature and the 
overall ARE was ~13 %. The corresponding ARE 
for similar computations employing the Jouyban-
Acree model was ~10 % (51). 
 
MIXTURE RESPONSE SURFACE MODEL 
 
Statistically based mixture response surface 
methods, MRS, (17) have been proposed for 
correlative purposes and these models are as 
follows: 

'
2

'
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'
22

'
11log ffffX m βββ ++=  (25) 
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in which β1 - β3, β'
1 - β'

4 and β"
1 - β"

5 are the 
model’s parameters and f'1 and f'2, are given by f'1 = 
0.96 f1 + 0.02 and f'2 = 0.96 f2 + 0.02 (17). By 
converting f values to f', the model can cover the 
whole range of volume fraction of the cosolvent (f1: 
0-1). The authors showed the superiority of the 
MRS equations to the EHS model by examining 
xanthine derivative solubilities in dioxane-water 
mixture (17). The MRSs are correlative models and 
no report was published on their prediction 
capabilities. 
 
THE KHOSSRAVI-CONNORS MODEL 
 
The Khossravi-Connors model (20) was formulated 
as the summary of the free energy changes of three 
steps involved in the dissolution of a solute in a 
solvent system: 
 

0000
solvationcavitycrystaltotal GGGG Δ+Δ+Δ=Δ          (27) 

 
where 0

totalGΔ  is the total free energy change, 
0
crystalGΔ  is the crystal lattice energy and any 

solute-solute interactions in the solution 
representing the conversion of the crystalline solute 
to the gaseous solute, 0

cavityGΔ  is the free energy 

change of cavity formation and 0
solvationGΔ  is the 

free energy changes of insertion of the gaseous 
solute in the cavity and its solvation processes. 
Khossravi and Connors called 0

crystalGΔ  as 

intersolute effect, 0
cavityGΔ  as medium effect and 

0
solvationGΔ  as the solvation effect. The total free 

energy change could be related to the experimental 
solubility of a solute in binary solvent mixtures 
( mX ) using: 
 

mtotal XkTG ln0 −=Δ   (28) 
 
where k is the Boltzmann's constant (20). 
The crystal composition of a solute is independent 
of the solvent composition, therefore, 0

crystalGΔ  
(intersolute effect) is a solvent independent term. 
The authors correlated the 0

cavityGΔ  and 0
solvationGΔ  

to the solvent composition of the aqueous-organic 
solvent mixtures. The 0

cavityGΔ  was formulated as: 
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where g is the curvature effect factor, A is the area 
defined by the van der Waals radii of the solute 
atoms and assumed as solvent independent quantity, 

1γ  is the surface tension of pure solvent 1, 

2
' 12 γγ

γ
−

=  in which 2γ  is the surface tension of 

the solvent 2, 1β  and 2β  are functions of the 
equilibrium constants ( 1K  and 2K ) of the 
solvation of the solute in the binary solvent mixture, 
i.e. 11 K=β  and 212 KK=β . The solvation effect 
was presented as: 
 

22
0
2212

0
1211

0
11

0 FGFGFGGsolvation Δ+Δ+Δ=Δ     (30) 
 
where 11F , 12F  and 22F  are fractions of the solute 
in the solvated forms by two molecules of solvent 1, 
one molecule of solvent 1 and one molecule of 
solvent 2 and two molecules of solvent 2, 
respectively, 0

11GΔ , 0
12GΔ  and 0

22GΔ  are the free 
energy changes of the solvation processes by 1-1, 1-
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2 and 2-2 molecules of the solvents. Equation (30) 
could be re-written as: 
 

0
11222121

0 GFSFSGsolvation Δ++=Δ  (31) 
 
where 0

11
0
121 GGS Δ−Δ=  and 0

11
0
222 GGS Δ−Δ= . 

By considering the equilibrium constants of the 
exchange equilibria of water by the cosolvent and 
further simplifications, equation (32) could be 
obtained: 
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Khossravi and Connors used the Leffler-Grunwald 
delta operator symbolism and defined the total 
solvent effects ( )( 2

0 fGtotalΔ ) as: 
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2
00 =Δ−Δ=Δ fGfGG totaltotalMδ        (33) 

 
and all solvent composition independent quantities 
were vanished: 
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The authors evaluated their proposed model 
employing 44 solubility data sets in 8 different 
cosolvents at various temperatures. The calculated 
curve-fit criterion (CFC) was: 
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and was in the approximate range of 0.8-7.5 %, 
with the overall of 2.6 % (20). These percentage 
were computed considering the 0GMΔδ  and the 
authors did not convert the 0GMΔδ  terms to the 
molar or mole fraction solubilities to be compared 
with the corresponding solubilities calculated by 
other cosolvency models. The model was derived 
based on thermodynamic approached, however, no 
report is avaliable on its prediction capability from 
the literature. 
 
 

THE JOUYBAN-ACREE MODEL 
 
The Jouyban-Acree model, formerly known as the 
combined nearly ideal binary solvent/Redlich-
Kister equation, was derived from a thermodynamic 
mixing model that includes contributions from both 
two-body and three-body interactions. The model 
was presented for solubility calculations in mixed 
solvents by our group (19, 52) and was expressed 
as: 
 

( )∑
=

−++=
2

0
21212211 logloglog

i

i
im ffSffXfXfX

(36) 
 

where iS  stands for the model constants. The iS  
values can be calculated by two procedures: 
 
1) regressing 
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21

2211 logloglog
ff
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against ( )21 ff −  and ( )2

21 ff −  by a classical 
least square analysis (18) and 
 
2) regressing 
( )2211 logloglog XfXfX m +−  against 21 ff , 

( )2121 ffff −  and ( )2
2121 ffff −  by a no 

intercept least squares analysis. This procedure 
produced more accurate calculations than the one 
above for the solute’s solubility in aqueous binary 
solvents (53). The Jouyban-Acree model is able to 
adequately represent the spectrum of solution 
behaviour from ideal to highly non-ideal systems 
(54-56). The model contains as many curve-fitting 
parameters (usually 3) as is necessary to accurately 
describe the actual measured data.  

The model was used to calculate multiple 
solubility maxima and also solute solubility in 
mixed solvents at various temperatures (57). The 
model was also used to correlate other physico-
chemical properties (PCP) in mixed solvent 
systems; including the electrophoretic mobility of 
analytes in mixed solvent electrolyte systems (58-
60), the instability rate constants in binary solvent 
systems (61), the acid dissociation constants in 
water-organic solvent mixtures at a fixed and 
various temperatures (52, 62), the capacity factor of 
analytes in HPLC (63), the dielectric constant (30), 
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surface tension (64), viscosity (65), density (66), 
solvatochromic parameter (67), refractive index 
(68) and ultrasound velocity (69) in the solvent 
mixtures. Theoretical basis of the model for 
describing the chemical potential of solutes 
dissolved in mixed solvents (19) and the acid 
dissociation constants in aqueous-organic mixtures 
(52) have been provided in earlier papers. The 
constants of the Jouyban-Acree model represent 
differences in the various solute-solvent and 
solvent-solvent interactions in the mixture (19). 
Therefore, the model should be able to calculate 
any PCP in mixed solvents, which is a function of 
solute-solvent and/or solvent-solvent interactions. 
The general form of the Jouyban-Acree model is: 

 
( )∑
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21,22,11, logloglog

i

i
i

TTTm T
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where PCPm,T, PCP1,T and PCP2,T are the numerical 
values of the physico-chemical property of the 
mixture and solvents 1 and 2 at temperature T, 
respectively, f1 and f2 are the volume (weight or 
mole) fractions of solvents 1 and 2 in the mixture 
and Ji represent the model constants. 
 The model could be extended for 
representation of the PCPs in ternary solvents as: 
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(38) 
 

where subscript 3 is the solvent 3 characteristics, 
'
iJ  and "

iJ  are the sub-binary model constants. 
The main limitations of the Jouyban-Acree model 
for predicting drug solubilities in water-cosolvent 
mixtures are: a) it requires two data points of 
solubilities in mono-solvent systems, and b) 
numerical values of the model constants. To 
overcome the first limitation, the solubility 
prediction methods in mono-solvent system should 
be improved. A number of articles reviewed the 
recent progresses in this field, especially with the 
aqueous solubility prediction methods (70-74). To 

address the second limitation, a number of solutions 
were examined:  

i) the model constants could be obtained 
using solubility of structurally related drugs in a 
given water-cosolvent system, and then predict the 
un-measured solubility of the related drugs where 
the expected MPD was ~ 17 % (27).  

ii) the model constants could be calculated 
using a minimum number of experimental data 
points, i.e. three data points, and then predict the 
solubilities at the rest of solvent compositions 
where the expected prediction MPD was < 15 % 
(75).  

iii) the trained versions of the Jouyban-
Acree models could be employed for solubility 
prediction of drugs in the aqueous mixtures of 
dioxane (76), ethanol (35), polyethylene glycol 400 
(77) and propylene glycol (78) at various 
temperatures and the expected MPDs were ~ 27 %, 
~ 48 %, ~ 40 % and ~ 24 %, respectively. Table 3 
listed the numerical values of the Jouyban-Acree 
model constants for the 4 cosolvents studied. 
Further experimental data sets are required to train 
similar models for the other cosolvents.  

iv) in the trained versions of the Jouyban-
Acree model, we assumed the extent of the solute-
solvent interactions are the same, however, it is not 
the case since various solutes possess different 
functional groups leading to various extent of the 
solute-solvent interactions. To cover this point, the 
deviated solubilities from the trained versions of the 
Jouyban-Acree model were correlated using QSPR 
models which resulted in the reduced MPD values. 
The MPD values for dioxane, ethanol, polyethylene 
glycol 400 and propylene glycol were 18, 33, 38 
and 16 %, respectively (79, 80).  

v) a generalized version of the Jouyban-
Acree model was proposed using its combination 
with the Abraham parameters where the model 
constants of the Jouyban-Acree model were 
correlated with the functions of the Abraham 
solvent coefficients and the solute parameters as: 

 

( ) ( ) ( )
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 (39) 

 
where A terms were the model constants (81), c, r, 
s, a, b and v are the solvents coefficients, subscripts 
1 and 2 denote cosolvent and water, respectively, 
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2R  is the excess molar refraction, H
2π  is 

dipolarity/polarizability of the solute, 

∑ H
2α denotes the solute’s hydrogen-bond acidity, 

∑ H
2β  stands for the solute’s hydrogen-bond 

basicity and XV  is the McGowan volume of the 
solute in unit of 0.01(cm3/mole). The Ji (i.e., J0, J1 
and J2) terms of the studied solubility data sets were 
regressed against ( )2

21 cc − , ( )2
212 rrR − , 

( )2
212 ssH −π , ( )2

212 aaH −∑α , 

( )2
212 bbH −∑β  and ( )2

21 vvVX −  values to 
compute Aj,i terms, then the Aj,i terms were replaced 
in equation (37) and the solubility of drugs in 
binary solvents were predicted employing 
experimental values of X1 and X2. The applicability 
of the generalized model was evaluated employing 
30 data sets including various cosolvents and the 
expected MPD for the predicted solubilities was ~ 
18.5 % (81). Using this version, the only required 
data is the solubility in neat water and cosolvent 
systems. Table 4 listed the numerical values of the 
model constants of equation (39). 
 In practice, when the binary solvents are 
not able to dissolve the desired amount of a drug in 
a given volume, ternary solvents are often used. The 
applicability of the Jouyban-Acree model for 
calculating the solubility of drugs in ternary 
solvents was shown using solubility data of 19-nor 
1α, 25-dihydroxyvitamin D2 in water-ethanol-
propylene glycol mixtures where the MPD was ~ 17 
% (82). To provide a predictive model for ternary 
solvents based on solubility data in binary solvents, 
the sub-binary constants of the Jouyban-Acree 
model were used to predict the solubility of 
paracetamol in ternary solvents where the MPD was 
< 10 % (83). Using a minimum number of 
solubility data of salicylic acid in aqueous mixtures 
of ethanol and propylene glycol and also ethanol-
propylene glycol mixtures (3 data points from each 
binary system), a trained version of the Jouyban-
Acree model was presented to predict the solubility 
of salicylic acid in binary and ternary solvents 
where the MPD was ~ 7 % (84). These capabilities 
should be further investigated employing more 
experimental data sets. 
 The Jouyban-Acree model has theoretical 
justifications (19), showed the most accurate 
correlations among other cosolvency models (56) 
and capable of predicting the solubility data in 
mixed solvents at various temperatures employing 

the solubility data in neat solvents (35, 76-78). It is 
also capable of modeling other physico-chemical 
properties in mixed solvents and we believe that it 
is the best cosolvency model both from correlative 
and predictive capabilities viewpoints and promises 
better applicability in the pharmaceutical 
applications. 
 In the latest work from our group, a new 
definition of the solubilization power of a cosolvent 
was presented. Based on the new definition the 
solubilization power of a cosolvent is defined as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

max,log
X

X mω  in which the max,mX  

(maximum solubility in binary solvent) could be 
calculated using the Jouyban-Acree model 
employing the experimental values of 1X  and 2X  
for a drug of interest. The more ω  value for a 
cosolvent is the more solubilization power of the 
cosolvent which means a desired amount of a drug 
could be dissolved at the minimum concentration of 
the cosolvent (85). The concentration of the 
cosolvent in the pharmaceutical formulations is an 
important factor from both toxicological and 
economical points of view. 
 

Table 3. Numerical values of the Jouyban-Acree model (J0, J1 and J2) 
for commonly studied cosolvents, the number of data sets (NDS) 
employed in the training process of the model and the references. 
Cosolvent J0 J1 J2 NDS Reference 
Dioxane 958.44 509.45 867.44 36 76 
Ethanol 724.21 485.17 194.41 26 35 
Polyethylene 
glycol 400 

394.82 -355.28 388.89 79 77 

Propylene 
glycol 

37.03 319.49 - 27 78 

 
THE MODIFIED WILSON MODEL 
 
The modified Wilson model was derived from an 
expression for the excess free energy of mixing of 
non-electrolyte solutions based on the Flory-
Huggins theory for athermal mixtures. Comor and 
Kopecni (86) modified the Wilson model and one 
can estimate solute solubility in binary solvent 
mixtures from measured values in the pure solvent 
and cosolvent and also excess Gibbs free energies 
for the binary solvent mixture (18). The modified 
Wilson model is: 
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(40) 
 

By adjustment of this model it was shown that a 
simplified form of the modified Wilson model (23) 
is able to calculate solute solubility in water-
cosolvent mixtures more accurate than modified. 

Wilson model, although this simplification 
was not successful in the case of solubility 
prediction in non-aqueous binary solvents (18). 
Thus the simplified form is: 
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(41) 
 
where Λ12

adj
, Λ21

adj
, λ12

adj
 and λ21

adj
 are the 

adjustable parameters of the model which can be 
evaluated via a nonlinear least squares analysis or 
by developing a simple computer program which 
calculates the solute solubility at each composition 
of the cosolvent and employs pre-selected values 
for the adjustable parameters (23). By using 
equation (41), there is no need to determine the 
ideal mole fraction solubility of the solute, which is 
one of the advantages for equation (41). 
Nevertheless equations (40) and (41) are 
mathematically equivalent with the log-linear 
model, for which the adjustable parameters equal 
unity. The modified Wilson model is a correlative 
model. 
 
THE GENERAL SINGLE MODEL 
 
As a polynomial equation the general single model, 
GSM, (22) was derived from theoretically based 
cosolvency models, i.e. the excess free energy and 
the Jouyban-Acree models, by algebraic 

manipulations. It has already been used as an 
empirical equation to correlate solute solubility in 
the pharmaceutical literature (28, 87, 88). GSM is 
expressed as a single power series of the solute free 
cosolvent fractions by equation (42): 
 

L++++= 3
13

2
12110log fKfKfKKX m  

(42) 
where 30 KK −  denote the model constants, which 
are calculated using least squares analysis. Full 
details of the derivation was provided in the 
reference (22). 
 
THE QSPR MODEL OF RYTTING et al. 
 
Rytting et al. (89) determined the solubility of 122 
solutes in water, polyethylene glycol 400 (PEG 
400), and three binary mixtures containing 25, 50 
and 75 % of PEG 400 and treated the solubility in 
binary solvents as separate systems. These models 
are slightly different from other cosolvency models 
which treated the binary solvents as a continous 
system. The general form of the Rytting model is: 
 

0 1 2 3 4

5 6 7

log s

s

X c c MW c V c RB c HBA
c HBD c RG c D

= + + + +
+ + +

 

 (43) 
 

where X  is the molar solubility of the solute, 
MW  is the molecular weight (g/mol), sV  is the 
molecular volume (Ǻ3), RB  is the number of 
rotatable bonds, HBA  is the number of hydrogen-
bond acceptors, HBD  is the number of hydrogen-
bond donors, RG  is the radius of gyration (Ǻ), sD  

is the molecular density (
sV

MW
) and 70 cc −  are 

the model constants. 

 
 
 

Table 4. The numerical values of the QSPR models (equation (39)) for predicting the model 
constants of the Jouyban-Acree model taken from a reference (81). 
 A0 A1 A2 A3 A4 A5 A6 
J0 2113.119 -1093.783 3380.661 -13.865 -4.921 -5.659 15.250 
J1 -2001.561 1142.780 -2735.160 -38.541 13.176 0.811 38.508 
J2 1474.963 -1507.479 4421.302 17.981 -21.196 6.595 -13.386 
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The investigated solutes were divided into 84 data 
as training set and 38 data as test set. The models 
(for each solvent composition) were trained using 
84 data points and the prediction capability of the 
models were not satisfactory (89). To provide better 
models, genetic algorithm was used to divide the 
training set into two subsets 1 and 2 based on the 
similarities of the molecular descriptors. Two sets 
of the model constants ( 70 cc − ) were reported and 
the solubilities of the test compounds were 
predicted using the most similar model of 1 or 2 to 
the descriptors of the test compound. The similarity 
between compounds were determined using ijd  
term defined by: 
 

( )∑ −=−= 712 kXXd jkikij  
(44) 

 
where 1iX , 2iX , … and 7iX  are the seven 
desciptors of compound i and 1jX , 2jX , … and 

7jX  are the seven desciptors of compound j and 

ijd  is the elucidation distance between compounds i 

and j. The smallest ijd  was found between test set 
compound A and training set compound B, means 
that solubility prediction of compound A using 
trained model by set B will produce the best 
predictions. 
 Rytting et al. (89) evaluated the accuracy of 
their models by computing the residual ranges in 
log unit for the test set, sorted in five ranges, i.e. <± 
0.5, ± 0.5-1.0, ± 1.0-1.5, ± 1.5-2.0 and >±2.0. The 
results were also compared with those of the log-
linear model of Yalkowsky. Figure 2 showed the 
relative frequencies of the residuals of the QSPR 
model of Rytting et al. and log-linear model of 
Yalkowsky for three water- PEG 400 compositions.  
 The relative frequencies of both models are 
similar, however, it should be noted that the log-
linear model employs the aqueous solubility data of 
each solute as input value and the QSPR model 
treated each solvent composition as a separate 
system. In addition, the required computations are 
more complicated when compared with the 
straigthforward calculations of the log-linear model. 
 
 
 
 

THE ARTIFICIAL NEURAL NETWORK 
MODEL 
 
An attempt was made using artificial neural 
network (ANN) models and different numerical 
analyses which are demanded in the pharmaceutical 
applications (90). The optimized topology of the 
ANN was 6-5-1 and the network was used 1f , 2f , 

1log X− , 2log X− , 1δ  and 2δ  as input variables 
and mXlog−  was its output. The accuracy of the 
ANN method for computing solubility data of drugs 
was checked by calculating the mean percentage 
deviation (MPD) and individual percentage 
deviation (IPD) for 35 data sets of various drugs in 
8 cosolvent systems. The results were compared 
with the best muliple linear regression (MLR) 
model (i.e. the Jouyban-Acree model). 

In numerical analysis I, all data points from 
each set was used to train the models and the back-
calculated solubilities were used to compute the 
MPD and IPD values. The overall MPDs were 0.9 
and 5.6 % for ANN and MLR models, respectively. 
In analysis II, five data points from each data set 
were used as trainig set and the solubility at other 
solvent compositions were predicted. The overall 
MPDs for ANN and MLR models were 9.0 and 
11.3 %, respectively. A single ANN model 
(analysis III) was trained using all data points of 35 
data sets and the solubilities were back-calculated 
where the ovearll MPD was 24.8 %. In the 
numerical analayis IV, solubility data sets with odd 
numbers were used as training set for ANN and the 
sets with even numbers were used as prediction set 
and the overall MPD for predicted solubilities was 
56.0 %.  
The correlation ability of ANN and MLR models 
for the solubility of various drugs in aqueous 
mixtures of a given cosolvent were investigated 
(analysis V), where the overall MPDs were 2.0 and 
20.4, respectively for ANN and MLR models. In 
numerical analysis VI, the correlation ability of the 
models for structurally related drugs in a given 
water-cosolvent mixtures were studied. The ANN 
model produced the overall MPD of 4.7 % in 
comparison with the 18.4 % of MLR model. In the 
last numerical analysis (VII), the correlation ability 
of a given drug in various water-cosolvent systems 
was investigated. The ANN model produced the 
overall MPD of 3.4 %, whereas the corresponding 
value for the MLR model was 67.2 %. 
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Figure 2. The relative frequencies of the residuals of the QSPR and log-linear models sorted in five groups (Figure is 
drawn in this work and its raw data taken from the original reference (89)). 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Relative frequency of individual percentage deviations (IPD) for numerical methods 1-7 using MLR and ANN 
models (taken from a reference (90)) 
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The mean differences of the overall MPDs of the 
ANN and MLR models were statitstically 
significant in all numerical analyses except than 
analysis IV where there was no significant 
difference between two models. The ANN method 
produced better IPD distribution in comparison with 
the MLR model as shown in Figure 3 (90). 
 
THE UNIFIED COSOLVENCY MODEL 
 
As discussed in this review, several mathematical 
equations were presented to calculate the solute 
solubility in mixed solvents. The models are 
derived using different assumptions and are even 
based on empirical procedures. The solubility in 
mixed solvents is a single phenomenon and it is 
expected to mathematically represent the system 
using a single equation. In order to show that this is 
the case for the cosolvency models, a unified 
cosolvency model was derived which considers all 
available cosolvency models. More details of 
derivation procedure was presented in a previous 
paper (91). For this, we can summarise all 
cosolvency models as a power series of volume 
fraction of the cosolvent, GSM model. The main 
differences in the cosolvency models are that the 
accuracy and predictability of most of models are 
different from each other. This is the case because 
the models employed a different arrangement of 
independent variables and also different number of 
model constants (91). 
 
THE COSMO-RS MODEL 
 
The conductor-like screening model for real 
solvents (COSMO-RS) is a predictive model which 
integrates the concepts of quantum theory, dilectric 
contiuum models and surface interactions. Ikeda et 
al. (92) predicted the solubility of 15 drugs in 
water, ethanol, acetone and chloroform and 
compared the predicted solubilities with the 
experimental values by computing root mean square 
error (RMSE) which its overall value was 0.64 in 
log unit. The authors also tested the prediction 
capability of the COSMO-RS model on oxolinic 
acid solubility data in water-ethanol and 
sulfadiazine solubility data in water-dioxane 
mixtures where the RMSE values were 2.0 and 1.6 
log unit, respectively for oxolinic acid and 
sulfadiazine data (92). In addition to these 
deviations, the model applications require relatively 
sophisticated computations which are not favoured 
methods for most of pharmaceutical scientists. 

THE NEW MODELS PROPOSED BY 
YALKOWSKY’S GROUP 
 
A new model was proposed by Machatha et al. (93) 
which is claimed to be a better predictor of 
solubility of drugs in water-ethanol mixtures when 
compared with the log-linear model. The model is: 
 

2
11

12

1
loglog

fcfb
faXX m ⋅+⋅+

⋅+
=   (45) 

 
where a, b and c are the model constants. The 
authors compared the accuracy of equation (45) 
with that of GSM model (the third order polynomial 
of cosolvent fractions) employing solubility of 51 
compounds in water-ethanol mixtures. The 
accuracy criteria used in the comparison were root 
mean square error (RMSE) and average absolute 
error (AAE), where the average RMSE values for 
equation (45) and the third order polynomial were 
0.035 and 0.049, respectively. The corresponding 
RMSE for the flactuation model of Ruckenstein was 
0.064 (93). 

A bilinear function that accounts for the 
disparity between log-linear and parabolic models 
was also presented by Machatha and Yalkowsky 
(94) and its accuracy was checked using RMSE 
criterion by emloying the solubility data of 52 sets 
in water-ethanol mixtures. The proposed model for 
water-ethanol mixtures is: 
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where Aσ  is the slope of the ascending part of the 
solubility profile and Bσ  is the slope of the 
descending section of the profile. The RMSE values 
for the investigated data sets were reported in Table 
5 along with the RMSE of the equation (45), the 
third order polynomial, the second order 
polynomial, bilinear (equation (46)) and log-linear 
(equation (5)) models collected from the literature 
(94, 95). It should be noted that the average RMSE 
of the bilinear model was more than that of 
equation (45). 
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ACCURACY CRITERIA USED IN THE 
LITERATURE 
 
The accuracy of the predicted solubilities using the 
cosolvency models should be evaluated to recognise 
the differences between predictive and less 
predictive models and also to provide the expected 
error range for a preditive model. Various accuracy 
criteria using various terminologies were used in 
the literature which is briefly reviwed in this work.  
Yalkowsky, the pioneer of cosolvency modeling 
investigations, and his co-workers (93, 94) often 
used the root mean square error (RMSE) and 
defined it as: 
 

( )
N

edictedObserved
RMSE ∑ −

=
2Pr

      (47) 

 
where N is the number of predicted solubility data 
points. The next criteria used by Yalkowsky’s 
group (93, 95) is the average absolute error (AAE) 
which is defined as: 
 

N
edictedObserved

AAE ∑ −
=

Pr
         (48) 

The RMSE and AAE values could be defined in 
logarithmic ( mXlog  or mXln ) or arithmatic ( mX ) 
scales and to compare its reported values in 
different papers, the scale should be kept in mind. 
 

 
 

Table 5. The root mean square error (RMSE) of various equations for calculating solute solubility in water-
ethanol mixtures taken from the references (94-95). 

Solute Na Equation 
(45) 

Equation 
(42) up to 
power 3 

Equation 
(42) up to 
power 2 

Equation 
(46) 

Equation 
(5) 

Acetanilide 13 0.021 0.027 0.070 0.041 0.248 
Alanine 10 0.010 0.055 0.195 0.050 0.982 
Alprazolam 9 0.022 0.035 0.103 0.063 0.365 
p-Aminobenzoic acid 6 0.023 0.036 0.044 0.056 0.256 
Aminocaproic acid 10 0.029 0.105 0.271 0.047 0.988 
Amino-isobutyric acid 5 0.004 0.007 0.025 0.017 0.179 
Amino-n-butyric acid 6 0.005 0.044 0.140 0.017 0.574 
Anthracene 11 0.061 0.091 0.129 0.123 0.267 
Asparagine 5 0.010 0.019 0.128 0.003 0.627 
Aspartic acid 9 0.062 0.104 0.220 0.092 0.759 
Barbital 11 0.018 0.014 0.061 0.035 0.214 
Benzamide 14 0.019 0.012 0.061 0.031 0.324 
Benzocaine 11 0.038 0.048 0.110 0.083 0.345 
Benzoic acid 11 0.029 0.083 0.103 0.112 0.543 
Biphenyl 11 0.069 0.092 0.152 0.204 0.200 
Caffeine 6 0.026 0.032 0.135 0.000 0.582 
Camphoric acid 12 0.047 0.052 0.069 0.201 0.414 
Diazepam 11 0.054 0.057 0.122 0.086 0.513 
Didanosine 11 0.050 0.062 0.081 0.075 0.456 
beta-Estradiol  6 0.034 0.085 0.155 0.134 0.645 
5-Ethylhydantoin 7 0.071 0.019 0.071 0.023 0.296 
Formyl-aminobutyric acid 7 0.051 0.011 0.069 0.024 0.211 
Formylglycine 9 0.008 0.027 0.074 0.020 0.288 
Formylleucine 8 0.043 0.063 0.083 0.076 0.282 
Furosemide 13 0.148 0.133 0.361 0.420 0.364 
Glutamic acid 6 0.038 0.102 0.217 0.076 0.790 
Glutamine 5 0.006 0.007 0.007 0.034 0.623 
Glycine 10 0.016 0.072 0.158 0.035 0.148 
Glycylglycine 7 0.016 0.074 0.213 0.025 0.854 
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Table 5 continued… 
 

      

Histidine 8 0.018 0.033 0.087 0.005 0.275 
Hydantoic acid 6 0.016 0.020 0.094 0.014 0.380 
Hydantoin 7 0.020 0.027 0.093 0.018 0.356 
Ibuprofen 8 0.120 0.123 0.249 0.197 0.462 
Indomethacine 10 0.058 0.083 0.172 0.147 0.419 
Leucine 5 0.022 0.014 - - - 
Metharbital 11 0.018 0.028 0.078 0.053 0.279 
Methylhydantoic acid 6 0.020 0.020 0.095 0.023 0.294 
Naphthalene 6 - - 0.000 0.000 0.000 
Norleucine 10 0.035 0.055 0.137 0.057 0.316 
Oxolinic acid 11 0.049 0.063 0.065 0.132 0.147 
Paracetamol 13 0.083 0.034 0.057 0.053 0.349 
Phenobarbital 12 0.017 0.015 0.092 0.087 0.488 
Phenylalanine 8 0.018 0.040 0.097 0.052 0.457 
Phenytoin 11 0.046 0.053 0.122 0.090 0.419 
Salicylic acid 6 0.007 0.067 0.129 0.106 0.258 
Strychnine 7 0.038 0.054 0.119 0.055 0.508 
Tartaric acid 12 0.002 0.005 0.017 0.005 0.092 
Theophylline 10 - - 0.080 0.027 0.364 
Triglycine 7 0.057 0.079 0.277 0.025 1.010 
Tryptophan 8 0.042 0.019 0.097 0.050 0.372 
DL-Valine  7 0.026 0.058 0.146 0.043 0.461 
Zalcitabine 11 0.022 0.026 0.052 0.056 0.396 
Ziduvudine 11 0.022 0.024 0.148 0.032 0.257 
Overall  0.035 0.050 0.120 0.069 0.423 
aN is the number of data points in each set.     
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Figure 4. Correlations between various error criteria; average absolute error (AAE), root mean square error (RMSE) with 
mean precentage deviation (MPD) (Figure is reproduced from a reference (81)). 
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The %Dev. was used by Acree and his 
colleagues and defined as: 

 

∑ ⎟
⎠
⎞
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The mean squared deviation (MSD) was also used 
in the literature: 

( )
pN
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m

Calculated
m

−−
−
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2

        (50) 

where p is the number of the parameters of the 
model (96). 
 The mean percentage deviation (MPD) was 
used by our group (23, 76-81, 83, 84) and is defined 
as: 
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The same definition was also used in some reports 
using various terminologies, such as percent mean 
error (27, 48, 57), average percentage deviation (75, 
117, 118) and percent deviation (56). 
 There are good correlations between 
various error criteria as it has been shown Figure 4 
(81), however, the data scattered around the line 
and in some cases significant deviation was 
observed when a model assessed using RMSE or 
MPD criteria. This is not an important parameter in 
comparing the accuracy of the models using a 
criterion, however, the experimental investigator 
needs to know the range of prediction error from a 
practical point of view and compare the accuracy of 
the experimentally determined data and their 
relative standard deviations with the prediction 
error. From this point of view, the MPD definition 
may be the best error criterion. 
 
ACCEPTABLE MPD RANGE IN 
SOLUBILITY CALCULATIONS 
 
There is a difference between “correlation” and 
“prediction” terms which are often used in the 
literature. In “correlation”, the experimental data 
points were fitted to the model and the models 
fitness capability could be assessed using the results 
of correlation studies. When the capability of a 
model was shown using the “correlation” studies, 
the model could be used for predicting unmeasured 
experimental data. This capability could be 

evaluated by dividing the exsiting experimental data 
into training and test sets. The predicted data of test 
set by the trained model was compared with the 
experimentally obtained data using an accuracy 
criterion, like MPD or RMSE etc. This process 
could be named as “prediction”. 

The solubility calculation can be studied 
from the calculation error point of view. In order to 
provide a comprehensive approach to evaluate the 
process of solubility prediction, these calculations 
have been divided into 3 groups: 
1) Pure predictive calculations such as group 
contribution methods; these types of calculations 
have been widely employed to predict the aqueous 
solubility of pharmaceutical and environmentally 
interesting compounds. A method using the 
aqueous functional group activity coefficients 
(AQUAFAC) have been presented for predicting 
aqueous solubility of 168 nitrogen containing 
compounds including some pharmaceuticals (97). 
The results are reported as the absolute average 
error (AAE) on a logarithmic scale as 0.42. 
However, this information is not in common 
format, and in order to provide a meaningful error 
term, which is comparable with RSD values, the 
deviations between predicted and experimental 
values, was calculated using equation (51). The 
calculated MPD value based on tabulated aqueous 
solubility data of 165 compounds (97) was 2108 % 
(98). The individual percentage deviations span 
between 0 % for nonylamine to 308219 % for 
dipropalin (its logarithm of aqueous solubility 
( 2log X ) is –2.966 and the predicted 2log X  is -
6.455). The MPD of AQUAFAC is still very high 
(MPD=284 %) when 5 outliers which produced 
very high errors were taken out (98). 
2) Semi-predictive calculations such as the 
general solubility equation (GSE) proposed by 
Yalkowsky and Valvani (99); The bases of these 
calculations were to employ a training set to 
compute the model constants and then from this to 
predict the other data points. In a comparative study 
reported by Huuskonen et al. (100), three multiple 
linear regression methods (including GSE) and an 
artificial neural network (ANN) model have been 
trained using 675 aqueous solubility data points 
taken from databases. In this data, the prediction 
capabilities of the models have been tested using 
aqueous solubility data of 38 pharmaceuticals. The 
MPD values for multiple linear regression models 
were 2466 ± 12877, 117 ± 125 and 181 ± 327 % 
and the corresponding value for AAN model was 
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154 ± 193 (98). Employing another version of the 
equations, Abraham and Le (101) proposed an 
amended solvation energy relationship to calculate 
the aqueous solubility of solutes. They employed a 
training set, which includes the aqueous solubility 
of 659 compounds and then from this predicted the 
aqueous solubility of 65 compounds. The reported 
AAE for the 65 predicted solubility values on a 
logarithmic scale was 0.50. The corresponding 
MPD value obtained was 134 ± 373 % (98). These 
MPD values are so large as to be meaningless and 
therefore it is suggested that such models would not 
be of use in the industry. However even with such 
enormous errors, both types of the solubility 
calculations are highly in demand in the 
pharmaceutical area, where fast, reliable and 
generally applicable methods are requested for 
prediction of aqueous solubility of new drugs 
before a promising drug candidate has been 
progressed through development process. From this 
information it is clear that current knowledge and 
expertise are insufficient to guarantee fully the 
reliability of the predictions. Thus, they are not 
acceptable as a basic procedure prior to developing 
an optimised process. But they do serve as a rough 
guide for further testing and for priority setting of 
parameter range. 
3) Correlative calculations such as simple 
least square methods; These methods provide a 
mean to screen the experimental data to detect the 
possible outliers where re-determination is required. 
In addition the correlative trained models can be 
employed to predict undetermined data. As an 
example, the GSE model is proposed for correlating 
aqueous solubility of different compounds in water. 
Its correlation ability and that of a revised form of 
GSE have been studied by Jain and Yalkowsky 
(102). However again although the MPD values for 
original and revised forms of GSE have been 
calculated employing aqueous solubility of 582 
nonelectrolytes, the MPDs obtained are 2881 ± 
30716 and 1417 ± 15393 %, respectively and 
therefore are meaningless (98). The reported error 
percentage for the correlative form of an amended 
solvation energy relationship employing 659 data 
was 0.408 (101) and the corresponding MPD value 
was 244 ± 850 % (98).  
A summary of different types of solubility 
calculations has been shown in Table 6. The 
deviations from experimental solubilities have been 
presented by MPD, and where there was no 
possibility to calculate the MPD, the original 

reported criteria collected form the papers have 
been employed. 

In trying to explain why prediction errors 
are so high, a number of sources can be discussed. 
In addition to the errors related to the nature of the 
models and calculation procedure, the quality of 
solubility data is a possible contribution to error 
sources in solubility data modelling. Experimental 
solubility data for a given solute can vary from 
laboratory to laboratory. As examples, a couple of 
solubility data collected from the literature are 
shown in Table 7. The compilation of solubility 
data given in Table 7 clearly illustrates that there 
can be a significant amount of variability in 
experimental solubilities. In an interesting work by 
Kishi and Hashimoto (112), solubility data of 
antharacene and fluoranthene reported by 17 
different laboratories using a standard method by 
the environmental agency of Japan have been 
summarized. The results showed that even when all 
variables were kept constant, inter-laboratory 
difference can still be very significant. They 
showed that the mean solubilities of anthracene and 
fluoranthene span 0.17 and 0.36 log unit and MPD 
value is 51 % (112). It is obvious that the ranges of 
individual solubilities are even greater where the 
range of logarithm of mole/L solubility for 
anthracene was –7.08 to –5.23. In addition to the 
variation of results for different laboratories, the 
RSD values for the repeated experiments from the 
same laboratory are significantly high. As 
examples, the reported RSD values are up to 9.2 % 
(20), 4.4 % (113) and 10 % (114). The possible 
reasons for such differences in solubilities arise 
from: 1) solute purity, 2) equilibration time, 3) 
temperature, 4) analysis method, 5) laboratory 
technique (115), 6) typographical error, 7) 
polymorphism (116) and 8) enantiomeric forms 
(111). 

From a computationl chemist’s point of 
view, the ideal model would have a MPD value 
close to zero. However, this is impossible because 
of small variations in experimental results 
(uncertainty) that appear in the training process of 
the model. In practice the experimental chemists 
look for a model, which enables them to calculate 
the solubility with MPD lower than the RSD values 
which are obtained from repeated experiments.  

As shown in Table 6 the error levels for 
aqueous solubility calculations are between 117 to 
2500 %. Dickhut et al. (103) proposed that a mixed 
solvent solubility estimation method is considered 
acceptable if solubility calculations are, on the 
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average, within 30 % of the experimentally 
determined values. This has also been confirmed by 
other research groups (36, 37). From our point of 
view, any model providing more accurate 
correlations/predictions in comparison with the 
previous models could be considered as a step 
forward and a single model could not produce the 
most accurate results for all data sets studied.  
 

COMPARISON OF THE ACCURACY OF 
THE MODELS 
 
An extensive comparison between the accuracy of 
various cosolvency models with different curve-
fitting parameters for correlating the experimental 
data was reported employing 30 solubility data sets 
of pharmaceutical compounds in 7 cosolvents (56).

Table 6. The reported deviations for solubility calculations collected from the literature 
   Correlative calculations Predictive calculations 

Systema Model Reference Nb Deviation Nb Deviation 
       
I UNIFAC 103 5 to 17 MPDc=55 - - 
I 14 103 5 to 17 MPD=36 - - 
I 19 103 5 to 17 MPD=49 - - 
I 45 93 11 RMSEd=0.049 - - 
I 42 93 11 RMSE=0.063 - - 
I Ruckenstein and 

Shulgin 
93 11 RMSE=0.064 - - 

I 42 (up to power 2) 95 - - 460 RMSE=0.120 
I 5 35 294 AAE=0.48 - - 

I, II 22 117 12 to 13 MPD=6.9 7 to 8 MPD=7.3 
I, II 26 117 12 to 13 MPD=11.4 7 to 8 MPD=14.6 
I, II 36 117 12 to 13 MPD=4.9 7 to 8 MPD=7.9 
I, II 42 (up to power 4) 117 12 to 13 MPD=7.5 7 to 8 MPD=8.0 
I, II Mean predicted 

solubility 
117 12 to 13 MPD=5.9 7 to 8 MPD=6.4 

I, II 36 90 11 to 21 MPD=5.56 6 to 16 MPD=10.33 
I, II ANN 90 11 to 21 MPD=0.90 6 to 16 MPD=9.04 
II 22 117 - - 6 to 8 MPD=8.7 
II 26 117 - - 6 to 8 MPD=13.3 
II 36 117 - - 6 to 8 MPD=7.2 
II 42 (up to power 4) 117 - - 6 to 8 MPD=7.4 
II Mean predicted 

solubility 
117 - - 6 to 8 MPD=7.6 

II 42 (up to power 3) 75 - - 6 to 16 MPD=13.1 
II 26 75 - - 6 to 16 MPD=14.2 
II 36 75 - - 6 to 16 MPD=12.5 
II 41 75 - - 6 to 16 MPD=15.0 
II Mean predicted 

solubility 
75 - - 6 to 16 MPD=10.6 

II 45 93 - - 455 RMSE=0.035 
II 42 93 - - 455 RMSE=0.050 
II 5 95 - - 460 RMSE=0.423 
II 45 95 - - 460 RMSE=0.069 
II 37 35 294 AAEe=0.19 - - 
II 37, 39 81 - - 467 MPD=18.5 
II 5 81 - - 467 MPD=76.7 
III 36 90 496 MPD=90.42 - - 
III ANN 90 496 MPD=24.76 - - 
IV 36 90 - - 236 MPD=81.10 
IV ANN 90 - - 236 MPD=55.97 
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Table 6 continued… 
 

    

V 36 90 454 MPD=20.36 - - 
V ANN 90 454 MPD=2.02 - - 
VI 14 modified 26 142 MPD=35 - - 
VI 36 27 142 MPD=18 - - 
VI 36 90 278 MPD=18.37 - - 
VI ANN 90 278 MPD=4.70 - - 
VII 36 90 120 MPD=67.19 - - 
VII ANN 90 120 MPD=3.36 - - 
VIII Least square 104 331 MSD=0.30 17  MSDf=0.34 
VIII AQUAFAC 96 873 MSD=0.56 97 MSD=0.56 
VIII GSE 96 873 MSD=0.80 97 MSD=0.80 
VIII ANN 105 123 MSD=0.22 13 MSD=0.23 
VIII Least square 105 123 MSD=0.28 13 MSD=0.28 
VIII AQUAFAC 106 133 MSD=0.33 25 MSD=0.324 
VIII GSE 106 - - 25 MSD=0.423 
VIII Mobile order 107 - - 531 MSD=0.37 
VIII Least square 100 675 - 38 MPD=2466 
VIII Least square 100 675 - 38 MPD=117 
VIII Least square 100 675 - 38 MPD=181 
VIII ANN 100 675 - 38 MPD=154 
VIII GSE 102 582 MPD=2881 - - 
VIII GSE-revised form 102 582 MPD=1417 - - 

a System, I: solubility of a given solute in binary aqueous solvent mixture, II: solubility of a given solute in binary 
aqueous solvent mixture using the trained model employing a minimum number of experimental data points III: 
correlation of solubility of various solutes in different water-cosolvent mixtures, IV: prediction of solubility of various 
solutes in different water-cosolvent mixtures, V: correlation of solubility of various solutes in a given water-cosolvent 
mixture, VI: correlation of solubility of structurally related solutes in a given water-cosolvent mixture, VII: correlation of 
solubility of a given solute in different water-cosolvent mixtures and VIII: correlation of aqueous solubility of different 
solutes. 
b N is the number of correlated/predicted data points in each set. 
c MPD is the mean precentage deviation and is calculated by equation (51). 
d RMSE is the root mean square error (in log scale) and is calculated by equation (47). 
e AAE is the average absolute error (in log scale) and is calculated by equation (48). 
f MSD is the mean squared deviation and is calculated by equation (50). 
 
 

Table 7. The differences between aqueous solubility of drugs from different research groups 
No.  Solute Reference 1 Solubility 1 Reference 2 Solubility 2 % Difference 

1 Paracetamol 108 0.001 110 0.001915 191 
2 Sulfadiazine 109 0.00000493 28 0.00000327 51 
3 Sulfadimidine 109 0.0000274 26 0.00000302 804 
4 Sulfapyridine 109 0.0000194 36 0.00000178 988 
5 Ibuprofen 101 0.000174 111 0.00943 (Racemate) 98 
6 Theophylline 101 0.0407 20 0.0340 17 
7 Naphthalene 102 0.000251 20 0.000201 25 

 
 
The cosolvency models possess different numbers 
of curve-fitting parameters and require various 
number of experimental data in the training process. 
As an example, the MPD of the general single 
model reduced from ~ 16 % to ~ 5 % by using 3 

and 7 curve-fitting parameters, respectively (56). 
The correlation ability of equations (23), (26), (36), 
(41) and (42) was compared where the overall MPD 
values were 5.92, 6.33, 3.06, 7.77 and 5.06 %, 
respectively, and equation (36) was the best from 
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correlation ability point of view (56). The 
corresponding values for the MPD of the 
Ruckenstein-Shulgin model was 7.7 % (119). This 
model is derived from the Kirkwood-Buff theory of 
solutions and required sophisticated caculations and 
is not a favoured cosolvency model in 
pharmaceutical area and therefore is not considered 
in this review. This was also the case for a recent 
work of Mirmehrabi et al. (120). 

The accuracy of the simplest cosolvency 
model; i.e. the log-linear model of Yalkowsky, was 
compared with that of the gererally trained version 
of the Jouyban-Acree model employing 26 data sets 
in ethanol-water mixtures at various temperatures. 
The reported AAEs of the log-linear and Jouyban-
Acree models were 0.48 ± 0.28 and 0.19 ± 0.13, 
respectively (35). 
 
CONCLUSION 
 
Solubility prediction in pharmaceutical area is still a 
challenging subject and requires further 
investigations from both experimental and 
computational points of view. The most commen 
method for increasing the low aqueous solubility of 
drugs is the addition of a miscible organic solvent, 
cosolvency. In addition to the experimental efforts 
for developing fast and reliable solubility 
determination methods and reporting new 
experimental solubility data in water-cosolvent 
mixtures, a number of cosolvency models have 
been proposed to represent the data. The available 
cosolvency models were reviewed along with a 
short discussion on the acceptable prediction error, 
the accuracy of the present models and also the 
accuracy criteria from the literature were discussed. 
From the present models, the log-linear model of 
Yalkowsky provides a good estimate of the drug 
solubilities in water-cosolvent mixtures employing 
aqueous solubility datum and the Jouyban-Acree 
model provides acceptable predictions to be used in 
the pharmaceutical industry. The latter model has 
theoretical justification and could also be used for 
modelling other phisico-chemical properties in 
mixed solvents and promises better applicabilities 
in pharmaceutical area. 
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