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ABSTRACT - Ultrasonography is a safe, inexpensive and wide-spread diagnostic tool capable of producing 
real-time non-invasive images without significant biological effects. However, the propagation of higher energy, 
intensity and frequency ultrasound waves through living tissues can induce thermal, mechanical and chemical 
effects useful for a variety of therapeutic applications. With the recent development of clinically approved High 
Intensity Focused Ultrasound (HIFU) systems, therapeutic ultrasound is now a medical reality.  Indeed, HIFU 
has been used for the thermal ablation of pathological lesions; localized, minimally invasive ultrasound-
mediated drug delivery through the transient formation of pores on cell membranes; the temporary disruption of 
skin and the blood brain barrier; the ultrasound induced break-down of blood clots; and the targeted release of 
drugs using ultrasound and temperature sensitive drug carriers. This review seeks to engage the pharmaceutical 
research community by providing an overview on the biological effects of ultrasound as well as highlighting 
important therapeutic applications, current deficiencies and future directions. 
 
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For 
Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. 
  
 
INTRODUCTION 
 
In 1880, the Curie brothers reported that certain 
crystalline materials generated an electric potential 
when subjected to mechanical pressure (1), a 
phenomenon later named the piezoelectric effect. 
Practical applications of piezoelectric properties 
enabled the development of transducers which 
could generate ultrasound waves for different uses, 
of which submarine sonar was one of the earliest 
(2). Since then, ultrasound has been used in every 
day devices such as alarms, vaporizers, medical 
imaging and important industrial processes like 
plastic welding, material cleaning, and non-
destructive testing. 
 In the pharmaceutical and chemical 
industries, the application of ultrasound to promote 
chemical processes is broadly known as 
sonochemistry (3). Sonochemistry, or the physical 
and chemical interaction of ultrasound with 
molecular species, has been thoroughly studied (3-
5) and is an important tool for promoting reactions 
used for synthetic and medicinal chemistry as well 

as for improving drug extraction processes (6-9). 
Ultrasound is being explored to solve 
pharmaceutical manufacturing and formulation 
issues (10) as well as the dispersion of solids, the 
deagglomeration of solids in liquid and the 
preparation of colloids.  In addition, ultrasound has 
been used in the development of novel catalysts, 
nanomaterials, nanocrystals and nanoscale catalysts 
among other applications (11-13). 
 Diagnostic imaging is the most widespread 
medical application of ultrasound used as a clinical 
tool for more than 40 years, mainly due to its non-
ionizing nature and the ability to conduct real-time 
imaging (14). In addition, ultrasound energy is used 
clinically for thermal tissue ablation, haemostasis, 
thrombolysis and to promote tissue regeneration 
(15-17). More recent developments have focused on 
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the use of ultrasound for molecular imaging (18), as 
well as ultrasound-mediated therapeutic bio-
molecule and drug-delivery (15,19,20). This has 
highlighted the value of developing applications 
with contributions from physicists, medicinal 
chemists, biologists, material and pharmaceutical 
scientists. In this article, we intend to draw attention 
to the potential uses of high intensity ultrasound for 
therapeutic purposes and the need for 
multidisciplinary efforts required for expanding its 
clinical application. 
 
ULTRASOUND BIOLOGICAL EFFECTS 
 
Initial reports on the biological effects of ultrasound 
appeared as early as 1928 when changes in living 
tissues caused by exposure to high intensity and 
frequency sound waves were reported (21). During 
the 1940s, the use of focused ultrasound for 
therapeutic ablation, or ultrasonic surgery, was first 
proposed (22) and was later used to treat patients 
with Parkinson's disease and other neurological 
conditions (23). Nevertheless, the therapeutic 
applications of ultrasound were held back by the 
lack of imaging guidance during the treatment 
process raising important safety issues. With the 
development of ultrasound imaging, the potential 
hazardous effects of ultrasound were thoroughly 
investigated and damage mechanisms, thresholds, 
and propagation properties through tissues were 
elucidated (24-28). The term ultrasonic dosimetry, 
which relates ultrasound intensity, acoustic pressure 
and other physical parameters with the likelihood of 
producing biological alteration, was created to 
guide the design of ultrasound imaging devices. 
Fortuitously, ultrasound dosimetry studies intended 
for assessing the safety of diagnostic imaging have 
advanced our understanding of the effects of 
ultrasound on cells and tissues inspiring the 
development of more advanced therapeutic 
applications (26,29). Two main biological effects 
are observed when high intensity acoustic waves 
propagate through tissues: thermal and mechanical. 
 
Thermal Effects 
When ultrasound waves propagate through tissues 
the wave amplitude decreases with distance. This 
phenomenon is called attenuation and is due to 
wave absorption and scattering (26). Absorption is 
the mechanism whereby a portion of the wave 
energy is converted into heat while scattering 

results from the wave changing direction. As a 
result of acoustic absorption, tissue temperature 
increases at a rate greater than heat dissipation 
caused by conduction or blood perfusion. Tissue 
temperature increases caused by ultrasound energy 
can be calculated through the widely used bio-heat 
transfer equation (BHTE) (30). It is then possible to 
estimate the thermal dose (31) and evaluate if the 
dose is high enough to reach the threshold values at 
which tissue damage in the form of coagulation 
necrosis will appear (32-34).  
 By using these calculations, researchers can 
predict the tissue response to the thermal effects of 
ultrasound and therefore exert control by changing 
the exposure parameters such as time, power, 
frequency, geometry or distance. These techniques 
have been successfully used for a variety of 
ultrasound exposure conditions and tissue types for 
the design and planning of thermal treatments on 
bone (35,36), prostate (37), heart (38-40) and brain 
(36). 
 
Mechanical Effects  
The mechanical effects induced by high intensity 
ultrasound include cavitation, microstreaming and 
radiation force.  The phenomenon of acoustic 
cavitation begins when gas filled cavities, called 
microbubbles, which spontaneously form or are 
naturally present in a liquid medium oscillate under 
the influence of an acoustic wave. The term 
cavitation was first proposed as an explanation for 
rapid erosion on ship propellers caused from 
enormous turbulence, heat and pressure produced 
by bubbles in the water (41). 
 There are two forms of acoustic cavitation, 
inertial and non-inertial. Non-inertial cavitation is 
described as the stable oscillation of gas-filled 
bodies in an ultrasonic field whereas inertial 
cavitation results when a gas-filled cavity expands 
during part of the acoustic cycle and then collapses 
rapidly because of erratic oscillations and rapid 
growth of the cavity. This violent collapse produces 
high temperatures and pressures with important 
practical consequences such as light emission and 
the formation of reactive chemical species. In 
contrast, non-inertial cavitation causes bubble 
oscillation and solution microstreaming producing 
shear forces in the microenvironment. Bubble 
oscillation also produces mechanical effects caused 
by the viscous surrounding fluid which opposes the 
oscillation, creating what is known as radiation 
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force (42). 
 The complexity of the cavitation phenomenon 
depends precisely on the type of the media exposed 
to ultrasound, making it difficult to obtain a 
consistent response from living tissues which vary 
in composition. Even though multiple mathematical 
models have been proposed to predict and exploit 
cavitation generated by ultrasound, there is not a 
single widespread mathematical model currently 
used for predicting the mechanical bioeffects (43). 
Nevertheless, important models have been 
developed to allow for more controlled parameter 
choice and treatment planning for therapeutic 
applications that consider mechanical bioeffects 
(44-46). 
 
ULTRASOUND IN THERAPY: HIGH 
INTENSITY FOCUSED ULTRASOUND 
 
High intensity focused ultrasound, widely known as 
HIFU, was born out of the medical application of 
the thermal effects of ultrasound waves. Whereas 
the maximum allowed time-averaged intensities of 
diagnostic ultrasound are 0.72 W/cm2 (47), HIFU 
has intensities in the range of 100 to 10,000 W/cm2 
(15,48). The ultrasound wave is brought into a tight 
focus usually 1 mm in diameter and 10 mm in depth 
such that the thermal effects are localized. The 
temperature increases at the focus to more than 
60ºC for several seconds causing irreversible cell 
death via coagulation necrosis, without damaging 
the surrounding tissues where the energy density is 
significantly lower. The ability of HIFU to focus 
high intensity waves makes it an attractive non-
invasive treatment option for ultrasound surgery 
(15).  The optimal choice of ultrasound parameters 
is application-specific and represents a compromise 
between the target depth and the desired rate of 
heating. For superficial therapies such as intra-
urethral prostate treatment the frequencies can be as 
high as 8 MHz, whereas frequencies as low as 500 
kHz are used for deep tissue treatments or 
treatments through the skull (29). 
 As mentioned above, the first medical 
application of HIFU was proposed as an extra-
corporeal neurosurgery device (49). In the early 
1980s, HIFU was used to treat glaucoma and 
intraocular tumours (50) but was eventually 
replaced by laser technology. However, there is 
renewed interest in HIFU for ophthalmological 
applications due to better focusing capabilities (48). 

By the mid 1980s, multiple groups were engaged in 
HIFU for treating tumours either by inducing 
localized hyperthermia or tissue ablation leading to 
multiple clinical trials and the development of 
commercial devices in the 1990s. Recently, the 
number of clinical applications of therapeutic HIFU 
has expanded to include treatment of uterine 
fibroids (51), glaucoma (48), prostate (52-56), 
breast (57,58), heart (39,40,59), pancreas (60), liver 
and esophageal tumours (61,62). HIFU has also 
been proposed for thrombolysis (63), hemostasis 
(64,65) and the treatment of venous insufficiency 
(66). 
 Studies evaluating the pathological changes 
in normal and malignant human tissues following 
exposure to HIFU have shown that thermally 
ablated tissues undergo homogeneous coagulative 
necrosis with irreversible tumour cell death and 
severe damage to tumour blood vessels at the 
microvasculature level (67). In breast cancer 
patients, it was confirmed that HIFU-ablated 
tumour cells did not continue to express cerbB-2 
protein, estrogen and progesterone receptors, when 
compared to non-ablated tumour tissues (57,68). 
HIFU has also been found to elicit acute 
inflammatory responses increasing tumour tissue 
destruction through immune cell activation, which 
could enhance the treatment response by acting 
synergistically with other therapies (69-71).  
 Three main categories of HIFU devices are 
currently used in the clinical setting and are usually 
classified according to the ultrasound energy 
delivery path: extracorporeal, intracavitary or 
interstitial. Extracorporeal devices are used for 
targeting organs that are readily accessible through 
an acoustic window on the skin such as uterine 
fibroids or breast (51,58); intracavitary devices are 
used for transrectal and transurethral treatment of 
prostate cancer (52,72) or for intraesophageal 
treatment  (38,62); and interstitial devices are used 
for treating the biliary duct and other difficult to 
access targets (73,74).  
 Commercial HIFU devices have been in the 
market since 1995, when Ablatherm® (EDAP 
Technomed S.A., Vaulx-en-Velin, France) (72,75) 
and Sonablate 500 (Focus Surgery Inc., 
Indianapolis, USA) (55,56) started clinical 
treatment of the prostate. In October 2004, the FDA 
approved a HIFU device for the treatment of uterine 
fibroids, ExAblate (Insightec, Haifa, Israel) (76), 
which uses magnetic resonance imaging (MRI) for 



J Pharm Pharm Sci (www.cspsCanada.org) 17(1) 136-153, 2014 
___________________________________________________________________________________________________ 

 

 
 

139 

treatment guidance, targeting and monitoring. 
Recently, the FDA classified HIFU systems as 
Class II (special controls) devices, in order to 
provide a reasonable assurance of safety and 
effectiveness of the equipment (77). Advanced 
devices such as Sonalleve (Phillips, The 
Netherlands) and ExAblate 2100 (Insightec, Haifa, 
Israel) are currently approved for clinical use on 
uterine fibroids and for relief of pain from bone 
metastases.  
 
HIFU FOR NON-INVASIVE DRUG 
DELIVERY 
 
Enhanced response to therapeutic agents after 
ultrasound exposure has sparked interest in HIFU as 
a drug delivery tool (15). Acoustic cavitation and 
the associated microstreaming effects from 
confined and localized forces are believed to be the 
mechanisms responsible for ultrasound-mediated 
drug delivery. While the physical mechanisms 
behind the enhanced delivery are similar, 
applications have been divided according to their 
therapeutic goal. We will describe each delivery 
application commonly associated with HIFU 
devices as they are either performed at high energy 
levels attainable only by HIFU or they are 
combined with an ablation therapy using HIFU. 
 
Sonophoresis 
Transdermal enhanced delivery of drugs using 
ultrasound was first reported in 1954 when 
hydrocortisone was used to treat polyarthritis in 
conjunction with ultrasound. This delivery method 
is known as sonophoresis and is currently used as a 
powerful tool to enhance transdermal drug delivery 
and achieve needle-free drug administration (78). 
For a detailed review on the mechanisms of action, 
current uses and trends in the field of transdermal 
sonophoresis see Escobar-Chavez et al. (79). 
 The technique works by the shock waves 
generated from collapsing cavitating bubbles found 
naturally in the skin, that introduce small openings 
in the intracellular spaces allowing for the passage 
of small molecules (80). Since cavitation is more 
common at lower frequencies, sonophoresis is 
performed by devices that work under 100 kHz 
(78). As HIFU is usually performed at higher 
frequencies and depths, it is typically not associated 
with sonophoresis. However, the energy levels 
required for sonophoresis as well as the reported 

bioeffects are compatible with HIFU devices. The 
delivery facilitated by sonophoresis induces 
dispersion of the drug throughout the epithelial 
layers, but has not yet been proven to enhance intra-
cellular delivery (79). 
 
Sonoporation 
The transient permeabilization of cell membranes 
through ultrasound-induced pores in the lipid 
bilayer is known as sonoporation. Inertial cavitation 
induced by ultrasound at an interface, such as the 
membrane of a cell or tissue barrier, causes 
microbubbles within the focal point to collapse in a 
non-spherical manner driving high-speed jets of 
liquid into the interface (Figure 1). These jets are 
believed to produce temporary pores in the cell 
membrane as well as cause microstreaming in the 
extracellular environment. The passage of 
therapeutic agents occurs through the pores 
propelled in part by the mechanical effects of the 
microstreaming (81-83) (Figure 2) with additional 
effects from ultrasound induced endocytosis (84). 
Cavitation can be achieved through the natural 
formation of microbubbles under the influence of 
the high intensity ultrasound waves or it can be 
potentiated and controlled by exogenous systemic 
administration of microbubbles.  
 
 

 
Figure 1. Acoustic cavitation. An ultrasound wave 
generates changes in pressure in the propagation 
medium where microbubbles are present. The 
microbubbles can be floating in the medium (A) or 
pushed against an interface (B) by the radiation force. 
When an inertial cavitation regime is present the 
microbubbles expand (1) and contract (2) in response 
to the pressure changes and eventually implode (3) 
leading to the generation of liquid streaming or jetting 
(4). The force generated by a high pressure jet of 
surrounding liquid may be sufficient enough to dent a 
solid surface or introduce pores in a nearby cellular 
membrane. 
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Figure 2. Sonoporation mechanism. The ultrasound-
irradiated gas-filled microbubbles resonate under the 
influence of the pressure change and are pushed by the 
radiation force toward the cell membrane. Transient 
pores appear when the cell membrane is disrupted by 
the expansion of the bubbles (1) or bubble collapse 
(2). The collapse and expansion of the microbubbles 
generate shear forces around the cell membrane that 
cause microstreaming, propelling the agents through 
the temporarily formed pores.  
 
 
 Microbubbles typically used for sonoporation 
are clinically approved diagnostic ultrasound 
contrast agents (85,86) and are currently available 
in the form of either microcrystalline or 
microbubble emulsions. Table 1 highlights the 
nature and application of currently available 
ultrasound contrast agents used for sonoporation. 
Ultrasound has been successfully used in preclinical 
studies to introduce membrane impermeable agents 
into cells or tissues (87,88) including small 
interfering ribonucleic acid (siRNA) (89,90), 
peptides (91,92), plasmid DNA (93-95), 
nanoparticles (88) and antibodies (87,96) (see Table 
2 for a summary). The application of sonoporation 
for the treatment of cancer (87,91,96-98), 
cardiovascular disease (99,100) and for gene 
therapy (101) is currently being explored.   
 In addition to the therapeutic effect caused by 
enhanced drug delivery into the cells, sonoporation 
has been suggested to enhance the cytotoxicity of 
anticancer therapeutic molecules (102,103) and 
promote ultrasound-induced apoptosis 
(92,104,105). Ultrasound-induced apoptosis is 
observed as a delayed biological effect in tissues 

exposed to high intensity ultrasound, especially in 
cell types that regenerate poorly such as neurons. 
Glioma cells exposed to ultrasound were shown to 
have increased caspase-3 expression and decreased 
expression of anti-apoptosis factors such as Bcl-2 
and survivin leading to ultrasound induced cell 
death (106). 
 Efforts to improve sonoporation-based 
therapies or the diagnostic specificity of ultrasound 
have led to the development of chemically modified 
microbubbles that possess either receptor targeting 
ligands or carry a drug payload (Figure 3).  
Advanced microbubbles that target a specific cell 
receptor have been successfully developed for 
ultrasound imaging and include microbubbles that  
bind to the P-selectin of activated platelets for 
atherosclerotic plaque detection (107,108), 
lipopeptides incorporated into the bubble membrane 
to target vascular endothelial growth factor (VEGF) 
 
 

 
 
Figure 3. Microbubbles as delivery agents. Gas-
filled microbubbles can be used as delivery agents by 
incorporating ligands on the hydrophobic ends (A), 
encapsulating ligands within the microbubble that 
would be delivered upon bubble collapse (B), or 
encapsulating drugs or nanoparticles within the 
microbubble which would be delivered when the 
bubble collapses (C).  These microbubbles can act as 
carriers of drugs, gene therapy, small interfering RNA 
(siRNA) or other nanoparticles.  



J Pharm Pharm Sci (www.cspsCanada.org) 17(1) 136-153, 2014 
___________________________________________________________________________________________________ 

 

 
 

141 

Table 1.  Proprietary agents used for contrast enhanced ultrasound (CEUS), compositions, indications and current 
market status 

Contrast 
agent 

Composition Imaging 
Indications 

Sonoporation 
application 

Market status 

Albunex Air filled albumin microspheres 
suspended in 5% w/v human 
serum albumin 

Echocardiography (93,184) Developed by Molecular 
Biosystems Inc 
Marketed by Mallinckrodt 
Inc. 

Definity 

(formerly 
Aerosomes) 

Perflutren (octafluoropropane 
gas) lipid microspheres  

Echocardiography (96,112) Developed by ImaRx 
Therapeutics Inc 
Marketed by Lantheus 
Medical Imaging Inc 

Echovist-200 Microcrystalline suspension of 
galactose 

Female genital 
tract 
Echocardiography 

See Levovist® Developed by Schering AG 
New formulation currently 
marketed as Levovist® 

Levovist Microcrystalline suspension of 
galactose and palmitic acid in 
sterile water  

Female genital 
tract 
Echocardiography 

(184) Developed by Schering AG 
Marketed by Bayer 
Schering Pharma AG  

Optison Perflutren protein-type A 
microspheres (human serum 
albumin) and perflutren 
(octafluoropropane gas) 

Echocardiography  (91,184) Developed by Molecular 
Biosystems Inc 
Marketed by Nycomed 
Amersham and 
Mallinckrodt, now GE 
Healthcare Inc 

Sonovue Phospholipid stabilized sulphur 
hexafluoride microbubbles 

Echocardiography  (84) Developed and marketed 
by Bracco Imaging 

 
 
and image angiogenesis (109), as well as antibody-
loaded microbubbles to detect prostate cancer by 
targeting the prostate-specific membrane antigen 
(PSMA) (110). Since gas microbubbles are 
typically prepared by high-shear mixing of the gas 
in liquid phase with the shell-forming material, 
stable targeting vectors such as peptides, some 
proteins, oligosaccharides and other small 
molecules can be attached to the shell forming 
component prior to the bubble formation. A 
modified procedure is important when 
incorporating proteins such as antibodies and 
enzymes, both of which can be unstable at high 
temperature and under the sonication conditions 
required for bubble formation.  For such targeted 
microbubbles, a modified anchor amenable to 
protein attachment is incorporated into the shell 
forming agent and included during the formulation 
process. Conjugation of the protein to the 
preformed microbubble bearing the appropriate 
anchor can then proceed under mild conditions 
(111). 
 Sonoporation is an attractive tool for 
molecule delivery that can be applied non-
invasively and in a localized manner by focusing 

the ultrasonic energy to a specific area.  Enhanced 
drug uptake has been shown to be localized, and 
multiple studies have indicated that large and small 
molecules can be successfully delivered (112).  
Others have optimized the ultrasound parameters 
and physical settings that achieve the best results 
(90,113), including the temporal window for 
successful delivery (114) and the biological 
conditions that can influence response (95). 
Sonoporation would benefit greatly from advanced 
targeted-microbubble formulations for therapy and 
the production of custom-developed microbubbles 
specific to a therapeutic target or an intended 
application. 
 
Blood Brain Barrier Disruption 
Other uses of ultrasound cavitation have been 
explored such as the treatment of gliomas through 
locally induced transient disruption of the blood 
brain barrier (BBB) produced by employing a 
combination of high intensity ultrasound, 
doxorubicin and Optison® microbubbles (115). 
Like sonoporation, cavitation is also believed to be 
the main mechanism behind the reversible opening 
of  the  BBB  improving  drug  uptake  in the  brain.  
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Table 2.  Application of microbubbles in sonoporation  
 
Microbubbles 

used 
Cells used Molecules transfected into cells Parameters 

tested 
Reference 

Albunex Chinese Hamster Ovarian Cells Luciferase plasmid, FITC-dextran Gene and 
macromolecule 
delivery 

(93) 

Optison HeLa and Epstein Barr Virus 
positive BJAB cells 

Calcein, Bak BH3 peptide Peptide delivery (91) 

Optison Epstein Barr virus positive 
BJAB , SV-40 and HSV 
containing mouse C166  and 
C166-GFP cells 

Calcein, eGFP siRNA, pEGF-C3 siRNA delivery (89) 

Soft (1A009) 
and hard 
(BG1766) 
shelled 
ultrasound 
contrast agents 

Rat mammary adenocarcinoma 
MAT B III cells 

FITC dextran, fluorescent latex 
nanospheres [25, 44, 75 nm sizes] 

Nanoparticle 
delivery 

(88) 

Optison Jurkat lymphocytes, human 
peripheral blood mononuclear 
cells 

Anti-rabbit IgG-Alex Fluor®, anti-
mouse IgD-FITC, Adriamycin 
hywdrochloride 

Antibody and 
Drug delivery 

(87) 

Optison SV-40 and HSV containing 
C166 cells, C166-GFP  cells 

Calcein, eGFP siRNA siRNA delivery (90) 

Optison Chinese Hamster Ovarian cells FITC-dextran Macromolecule 
delivery 

(185) 

Sonovue Primary bovine aortic 
endothelial cells, rat femoral 
arteries 

Tetramethylrhodamine, 
isothiocynate-dextran, FITC 
dextran, lysine fixable FITC 
dextran 

Drug and 
macromolecule 
delivery 

(84) 

Optison 
Definity 

Rat KHT-C fibrosarcoma cells FITC-dextran Macromolecule 
delivery 

(112) 

Sonovue Rat glial C6 cells Sytox Green, Sytox Blue, TOTO-3 
intercalating fluorophores 

Macromolecule 
delivery 

(114) 

Sonovue Human MCF-7 cells Polyethylenimine:deoxyribonucleic 
acid 

DNA delivery (94) 

Sonovue HEK-293T cells Branched Polyethylenimine, 
Vascular endothelial growth factor 
(165) peptide 

Peptide delivery (92) 

Definity HPV-positive CaSki and SiHa 
cells 

Monoclonal anti-E6 oncoprotein 
(F127-6G6) antibody from Arbor 
Vita and monoclonal anti-tubulin 
antibody 

Antibody 
delivery 

(96) 

Cationic 
liposomes and 
Sonovue 

Rat carotid artery Full-length cDNAs of rabbit 
Scavenger receptor class B 
member 1 (SR-BI) 

SR-BI DNA 
expression 

(186) 

 
 
Initial work revealed that short, high-intensity 
ultrasound waves above the cavitation threshold 
were found to produce temporary BBB disruption.  
Unfortunately, the therapeutic benefit was hindered 
by brain tissue damage occurring in some animals 
(116). This was resolved when BBB disruption was 
consistently produced using focused ultrasound 
with concomitant injection of intravascular gas 

microbubbles as additional cavitation sites. 
Moreover, the use of microbubbles reduced the 
required ultrasound intensity to levels below the 
threshold causing thermal damage to adjacent brain 
tissue and was more compatible with the induction 
of focal points within the skull (117). 
 The physical mechanism for BBB disruption 
is attributed to microbubbles cavitation activity but 
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the bioeffects are different compared to 
sonoporation. When the microbubbles pass through 
the tissue volume exposed to ultrasound they 
expand and contract at the frequency of the 
propagating acoustic wave due to the cyclic 
pressure reductions producing mechanical forces 
and microstreaming. In addition, the bubbles are 
pushed by a radiation force that moves them 
towards the vessel wall. Above an intensity 
threshold, the bubbles collapse close to the vessel 
wall creating fluid jets that can puncture the BBB 
allowing the passage of molecules through the 
barrier (116). Studies on the cellular mechanisms of 
this disruption have shown that macromolecule 
permeability is caused by the mechanical forces 
inducing the formation of channels and 
fenestrations in the endothelial cell wall, the 
opening or widening of interendothelial clefts and 
free passage through injured endothelial lining 
when the pressure is sufficiently high (118). 
 When using microbubbles in combination 
with ultrasound, the disruption of the BBB has been 
proven to be reversible with minimal damage to the 
local surrounding tissues in animals (20,117,119). 
Magnetic resonance imaging revealed that the BBB 
appears to remain permeable up to 24 hours after 
ultrasound exposure with optimal brain uptake 
occurring within 6 hours (117). Investigations into 
the safety of BBB disruption demonstrated that 
permeability is induced at 690 kHz and pressure 
values of 0.4 MPa significantly below the 2.3 MPa 
required for tissue necrosis (120). Histological 
examination of adjacent tissues after BBB 
disruption demonstrated insignificant levels of 
apoptosis or ischemia, with no observable 
differences up to 4 weeks after the disruption (121).  
 Ultrasound-mediated BBB disruption has 
been validated on various animal models such as 
rabbits (117), rats (115), mice (122) and non-human 
primates (123). HIFU successfully delivered 
dopamine receptor antibodies (122), enhanced 
response of brain cancers to doxorubicin and 
trastuzumab (115,124,125), promoted uptake of 
therapeutic antibodies for Alzheimer’s treatment 
(126) and DNA for gene therapy (127). New 
formulations for microbubbles that target the BBB 
may greatly increase barrier permeability and have 
enormous potential for improving the introduction 
of proteins and other impermeable therapeutic 
agents into the brain. 
 

Sonothrombolysis 
The use of ultrasound to potentiate the breakdown 
of blood clots, known as sonothrombolysis, has 
been investigated for several decades.  This 
technique was initially used for enhancing 
intravascular thrombus dissolution but, more 
recently, has also been proposed for treatment of 
stroke (128). Early reports described the use of low-
frequency ultrasound through the temporal bone to 
enhance thrombolysis in vitro (129). An improved 
efficacy of thrombolytic agents has been observed 
when coupled with ultrasound exposure, as reported 
by multiple groups (15). The mechanism for the 
enhanced thrombolytic effect of ultrasound was 
proposed to be the cavitation and collapse of 
endogenous microbubbles that disrupt the fibrin 
network (129). Further improvements were 
observed when thrombolytic agents were used in 
combination with ultrasound contrast agents, 
supporting the proposed disruption of fibrin by 
cavitation (130,131). The mechanical lysis of the 
clot can potentiate the activity of thrombolytic 
agents by improving drug penetration and altering 
the accessibility of fibrin structures to clot-
dissolving enzymes (131,132).  
 Sonothrombolysis is therefore usually 
performed in conjunction with thrombolytic agents, 
resulting in significant clinical improvements in clot 
lysis over the use of these agents alone (132). The 
advantage of using sonothrombolysis results from 
reduction in dose of thrombolytic agent required 
therefore reducing the risk of associated 
hemorrhage, hypotension and myocardial rupture 
(133). The procedure is frequently performed with 
commercial diagnostic devices capable of emitting 
higher ultrasound intensities, such as those used for 
Doppler imaging. Recent work on sonothrombo-
lysis is centered on the development of specific 
devices that can provide more controlled and 
reproducible results without the need for specialized 
care teams or training (134).  Having 
sonothrombolysis devices widely available in 
emergency centers is critical because of the need to 
maintain early and constant ultrasound exposure for 
improved clinical outcomes (132).  
 Currently, sonothrombolysis is also being 
explored as a standalone technique without the need 
for thrombolytic agents. Recent reports indicate that 
the use of ultrasound contrast agents are safe for 
sonothrombolysis and potentiate the therapeutic 
effect (130,131). It is therefore conceivable to use 
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only mechanical effects produced by ultrasound to 
induce clot lysis. In this context, HIFU may be the 
ideal approach that can provide the higher level of 
ultrasound energy required. Indeed, HIFU was 
successfully used to treat unconstrained clots in 
vitro (135) as well as constrained clots in vitro and 
in vivo (63). This work suggests that clot 
degradation is achieved by cavitation and can be 
monitored by changes in brightness of ultrasound 
images during treatment.  New developments in 
biotechnology could advance sonothrombolysis 
therapy either by targeted thrombolytic agents 
(136,137), or by employing a combination of 
targeted thrombolytic agents with microbubbles to 
enhance the ultrasound effects. 
 
Hyperthermia-triggered Drug Delivery 
The delivery or release of a drug at the desired site 
of action induced by the thermal effects of HIFU is 
known as hyperthermia-triggered drug delivery. 
The main purpose of this technique is to increase 
the therapeutic index of chemotherapeutics, which 
are often compromised by the distribution of the 
cytotoxic agent into normal organs and tissues 
leading to severe side effects.  Additional benefits 
derive from enhanced serum stability and 
overcoming solubility issues compared to systemic 
administration of the parent drug.  
 Efforts to improve drug toxicity profiles 
while simultaneously protecting the drug from rapid 
metabolism and excretion has led to the 
development of temperature sensitive liposomes 
(TSL) (for a thorough review of TSL’s see (138)).  
TSL encapsulate a water soluble drug within a 
hydrophilic core surrounded by a protective lipid 
bilayer (139).  Injection of the nanosized liposome 
drug carrier into the patient results in the passive 
accumulation of the TSL into tumours through the 
enhanced retention and permeability effect.  Site 
specific drug delivery is then fulfilled by mild 
hyperthermia causing the rapid and complete 
release of the drug into the tumour region.  Mild 
hyperthermia of the tumour area and local 
vasculature is typically induced by microwave, 
radio or ultrasound waves (140).  Although the 
spontaneous accumulation of drug containing 
liposomes typically occurs in tumour xenografts, 
mild local hyperthermia significantly enhances drug 
delivery into cancer cells and improves the 
therapeutic response (141,142). Additional benefits 
from local hyperthermia result from enhancing the 

accumulation of the TSL in tumour tissue (143).  In 
addition, increased blood flow to the tumour area 
coupled with enhanced cell permeability from 
hyperthermia induces improved delivery into cells 
of the tumour.  However, it is important to 
acknowledge that hyperthermic drug release from 
the TSL in the tumour region is the dominant 
driving force leading to higher cellular uptake and 
improved therapeutic response (144).  The success 
of the preclinical studies has led to a series of 
clinical trials evaluating a doxorubicin-loaded TSL 
called ThermoDox® (Celsion) for treatment of 
hepatocellular carcinoma (Phase III) and invasive 
breast cancer (Phase I) using microwave radiation 
to induce hyperthermia. Unfortunately, ThermoDox 
recently failed the phase III trial due to lack of 
patient benefit compared to the control group while 
the Phase I breast cancer study is still underway.   
 The application of HIFU to induce mild 
heating deep inside of tissues has considerable 
potential to improve the precision and clinical 
application of TSL-based chemotherapies. A 
significant benefit of HIFU hyperthermia results 
from the ability to focus and control heating by 
careful choice of the acoustic parameters including 
continuous or pulsed wave energy, frequency and 
intensity.  Another significant advantage of using 
HIFU for hyperthermic drug delivery is its 
compatibility with MRI which enables real time 
thermometry monitoring of tissue temperature. 
Instantaneous feedback on the focal point coupled 
with accurate tissue temperature measurement 
through image guidance establishes HIFU as the 
most attractive device for hyperthermic drug 
delivery. Indeed, recent efforts to use MR guided 
HIFU to deliver ThermoDox was examined in 
rabbit muscle demonstrating increased Dox uptake 
in the area of hyperthermia (145). ThermoDox with 
HIFU was assessed as a complimentary therapy to 
thermal ablation of bone cancer with improved 
results (146). MR guided HIFU was used to treat 
rabbits bearing VX2 tumours with ThermoDox 
successfully sparing adjacent tissues from Dox 
uptake (147).   
 The application of molecular imaging to 
visualize and quantify HIFU-induced TSL drug 
release has recently gained attention.  For example, 
TSL co-encapsulated with a Gadolinium contrast 
agent and Doxorubicin enabled imaging of TSL 
content release as demonstrated in vitro using 
squamous carcinoma cells (148) and later in a 
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tumour (149,150).  This strategy was expanded to 
include the nuclear based SPECT imaging by 
Indium-111 radiolabeling of the TSLs co-
encapsulated with Gadolinium and Dox enabling 
the researchers to determine blood kinetics and 
clearance of the TSLs as well as to monitor TSL 
content release (151).   
 In order to translate HIFU into a routine drug 
delivery method used in the cancer clinic, several 
improvements are needed. Advanced heating 
algorithms for HIFU hyperthermia were investi-
gated using a combination of mathematical 
modeling and in vivo experiments (152). Other 
groups have compared continuous wave versus 
pulsed wave HIFU in an effort to understand the 
mechanisms with which hydrophilic and lipophilic 
drugs are released from TSL (153).  In addition, 
HIFU is an excellent preclinical tool to investigate 
the suitability of new formulations and 
compositions of TSL as well to evaluate new 
ultrasound sensitive drug carrier nanoparticles. For 
example, advanced nanosized “stealth” TSLs 
modified with the PEG polymer had high 
Doxorubicin loading capacity, enhanced 
physiological stability in circulation, faster drug 
release upon mild HIFU heating and improved 
efficacy compared to the traditional lysolipid TSL 
(154). Others have recently synthesized a novel 
TSL by using cholesterol and an elastin-like 
polypeptide as additives to produce liposomes 
having high serum stability and enhanced efficacy 
in tumour xenografts (155). Recent efforts have 
been made to expand the use of nanoparticles for 
encapsulating hydrophobic drugs using ultrasound 
sensitive micelles composed of hydrophobic 
polymers (156,157). 
 
HIFU IMAGING GUIDANCE TRENDS 
 
Even though the therapeutic applications of 
ultrasound predated ultrasound imaging, it is the 
latter application which is universally known. The 
slow adoption of therapeutic ultrasound resulted 
from the lack of non-invasive targeting and 
temperature measurements. Eventually, advances in 
imaging methods during the 1980s and 1990s, 
particularly ultrasound imaging and MRI, helped 
further advance thermal applications for treating 
tumours (15,51,158,159).  
 The first clinical HIFU devices proposed in 
the 1990s used ultrasound imaging for guidance 

(55,158,160). At the same time, more sophisticated 
techniques for HIFU guidance using MRI were 
proposed (161). The advantage of ultrasound 
imaging over MRI is the costs associated with both 
equipment and infrastructure, as MR requires 
shielded rooms. However, MRI is the only FDA-
approved method for HIFU monitoring because real 
time temperature measurements are made during 
the ultrasound exposure (161-163). MR 
thermometry is particularly well-suited for HIFU 
providing the ability for closed-loop control of 
energy deposition, temperature measurement 
accuracy within 1 ºC, spatial resolution of 1 mm, 
and temporal resolution of 1 sec or less. As a result, 
the thermal dose of the treatment can be controlled 
and superposed to anatomical information (164). 
Additionally, MRI is the only modality that can 
provide immediate post-treatment assessment of the 
necrotic area by using standard contrast agent 
imaging (29,161).  
 Multiple clinical applications of HIFU guided 
by imaging have been proposed, and some of them 
are commonly available in clinics worldwide (29). 
Overall, both ultrasound- and MR-guided HIFU 
devices have received wide spread acceptance. The 
choice of imaging guidance technology is not made 
by the user since it is integrated into the commercial 
HIFU device. The two devices more widely used 
for HIFU prostate treatment required ultrasound 
imaging for guidance, and it is for these devices that 
most clinical results have been reported 
(53,165,166). On the other hand, MR-guided HIFU 
devices have been approved and extensively used 
for gynecological applications, particularly uterine 
fibroid ablation (167-170) and pain palliation from 
bone metastases (171-173). 
 Clinical outcomes of HIFU treatments are 
generally satisfactory but have been reported to be 
related to practitioner experience (169,174).  In 
particular for prostate cancer treatment using 
ultrasound-guidance, studies have shown that 
patients treated with HIFU can have post-therapy 
recurrence (53,174,175) suggested to be the result 
from off-target ablation sparing cancerous cells 
which was later confirmed by tissue biopsies 
following HIFU exposure (174).  
 Lessons from ultrasound-guided HIFU 
treatment of prostate cancer clearly show the value 
of precise tumour targeting and monitoring of the 
thermal treatment. Progress in ultrasound imaging 
techniques is still needed to monitor temperature or 
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tissue coagulation for ultrasound-guided HIFU 
devices (176-178). However, temperature control 
would not completely solve the clinical issues since 
the cancerous lesions and surrounding tissues are 
not easily distinguished.  
 Recent progress in MR or ultrasound 
molecular imaging could improve HIFU guidance 
by clearly defining tumour margins and more 
accurately identifying areas requiring treatment. A 
variety of these targeted contrast agents that 
recognize specific tumour biomarkers have been 
proposed and tested within in vitro and in vivo 
settings. MRI contrast agents rely on marker-
specific affinity proteins conjugated to either 
gadolinium (Gd) or super paramagnetic iron oxide 
(SPIO) and could image tumours in animal models 
(179-182). Ultrasound contrast agents could be used 
for guidance by coating the microbubble shell with 
ligands that target specific cellular markers 
(19,111). Targeted ultrasound microbubbles have 
been reported to image cancerous cells in vitro and 
in animal models (110,183). Contributions to the 
development of new contrast imaging agents by the 
pharmaceutical and molecular imaging sciences 
will propel HIFU-based therapy into the world of 
personalized medicine by improving treatment 
guidance. 
 
SUMMARY 
 
Ultrasound-based therapies, particularly high 
intensity applications, were inspired by efforts to 
understand the biological effects of ultrasound 
energy. Initial therapeutic applications relied purely 
on the thermal properties of ultrasound taking 
advantage of its minimally invasive nature and 
localized effects.  Ultrasound has since been 
developed as a tool for drug delivery by 
sonoporation, the reversible opening of the blood 
brain barrier, and the release of drugs from 
protective carriers by localized heat. Other 
therapeutic applications of ultrasound have been 
suggested such as the lysis of clots and drug 
delivery through the skin using sonophoresis. HIFU 
therapy was advanced by merging clinical devices 
with medical imaging technology but also with 
substantial contributions by biotechnology, 
medicinal chemistry and the pharmaceutical 
sciences. The pace at which current ultrasound 
research is progressing coupled with renewed 
interest in ultrasound therapy has led to significant 

investment in additional HIFU facilities throughout 
the world.  New HIFU facilities providing access to 
multi-disciplinary research teams will establish high 
intensity ultrasound as an emerging clinical tool for 
advanced drug delivery and therapy. 
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