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ABSTRACT - The eye is a very complex sensory organ consisting of numerous structures to coordinate the 
function of sight. It has a series of physical and chemical barriers to help maintain its homeostasis, and mediate 
environmental exposures. Transporters in the eye play a very important role in maintaining homeostasis by 
facilitating the movement of ions, nutrients and xenobiotics to various tissues in the eye, especially to non-
vascular tissues like the lens and cornea. They also ensure proper cell signaling by shuttling neurotransmitters 
within the retina. Thus, they are expected to play an important role in determining the ocular exposure of drugs 
and other pharmacotherapeutics. However, the role of ocular transporters in ophthalmic drug delivery and their 
clinical relevance has not been well characterized. The purpose of the present review is to summarize the current 
evidence in the literature on ocular drug transporters and their role in ocular drug delivery, with the emphasis 
predominantly on their role in ocular pharmacokinetics.  
 
This article is open to POST-PUBLICATION REVIEW.  Registered readers (see "For Readers") may 
comment by clicking on ABSTRACT on the issue's contents page. 
  
 
INTRODUCTION 
 
The role of drug transporters in the gastrointestinal 
(GI) tract, lymphatic system, blood brain barrier 
(BBB), liver and kidneys is well known and 
documented [1-6]. Transporters can affect multiple 
aspects of drug disposition and can result in 
potential drug-drug interactions, lack of efficacy, 
toxicity and drug related adverse events relative to 
exposure levels. 
 Drug transporters have the potential to alter 
the efficacy of a molecule at the site of action, for 
example, in the liver or the brain [1]. The brain 
parenchymal cells contain transporters including P-
glycoprotein (P-gp), which can efflux drugs, thus 
lowering their concentration at the site of action and 
ultimately decreasing their efficacy [2-5]. 
Conversely, facilitative transporters like organic 
cation transporters (OCTs) or dopamine transporter 
(DAT) would improve drug efficacy by transporting 
the molecule into or out of neurons, thus, increasing 
their target site concentration [5-7]. Although 
topical ocular administration is the primary method 
for delivery of therapeutics to the eye, not much is 
understood about the clinical relevance of 
transporters in ocular drug disposition. The eye, 
being responsible for the sense of vision, has 
evolved into an organ with complex anatomy and 

physiology to maintain homeostasis and ensure 
effective functioning. The mechanisms include 
transporters, ion channels, and physical barriers 
which act as defense mechanisms and help maintain 
concentrations of essentials nutrients. While there 
are good reviews on ocular drug transporters, little 
is known about their role in ocular drug efficacy, 
ocular pharmacokinetics and ocular safety issues 
[8-10]. In the present article, we review the current 
evidence in the literature on ocular drug 
transporters and their role in ocular drug delivery, 
with the emphasis predominantly on their role in 
ocular pharmacokinetics. We will also discuss their 
future relevance and the need to better understand 
their role in ocular drug delivery. 
 
ANATOMY OF THE EYE 
 
The eye is a very complex structure that is closely 
connected   to   the   rest  of   the  body   through  its  
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vascular and neural networks [11, 12]. Its unique 
anatomy and physiology place several constraints 
on the  delivery of  drugs to the  eye  because  of  its 
innate nature to protect itself and, ultimately, the 
vision from exogenous substances [11]. Therefore, 
it is critical to understand the anatomy and 
physiology of the eye to design adequate and 
effective drug delivery systems. The objective of 
this review is not to cover in detail the anatomy of 
the eye since there are excellent reviews and articles 
that cover this topic in detail. We recommend the 

reader review these references for further detail [11, 
13-33]. Ocular drug disposition is not only 
influenced by the complex anatomy, but also by 
lacrimation, tear film dilution and tear turnover 
mechanisms [34]. The presence of melanin and 
ocular transporters, as well as the blood-aqueous 
barrier (BAB) and blood-retinal barrier (BRB) 
significantly affect ocular drug disposition [12, 35-
39] [40-45].  
 There are several routes of ocular drug 
delivery  (Table 1).   The benefits  and challenges of  

 
 
Table 1. Summary of Route of Administration, Benefits, and Challenges in Ocular Delivery (modified from 
Gaudana et al. [12] with permission). 
 

Route Benefits Challenges 
Application in the 

treatment of diseases 

Oral/Systemic 
Patient compliant and noninvasive 
route of administration 

BAB, BRD, high dosing 
causes toxicity, BA <2% 

Scleritis, episcleritis, 
CMV retinitis, PU 

Topical 
High patient compliance, self-
administrable and noninvasive 

Higher tear dilution and 
turnover rate, cornea acts 
as barrier, efflux pumps, 
BA <5% 

Keratitis, uveitis, 
conjunctivitis, 
scleritis, episcleretis, 
blepharitis 

Intravitreal 
Direct delivery to the vitreous and 
retina, sustains drug levels, evades 
BRB 

Retinal detachment, 
hemorrhage, cataract, 
endophthalmitis, patient 
incompliance 

AMD, PU, BRVO, 
CRVO, DME, CME, 
UME, CMV retinitis 

Intracameral 

Provides higher drug levels in the 
anterior chamber, eliminates usage of 
topical drops, reduces corneal and 
systemic side effects seen with topical 
steroid therapy 

Toxic anterior segment 
syndrome (TASS) and 
toxic endothelial cell 
destruction syndrome 
(TECDS) 

Anesthesia, prevention 
of endophthalmitis, 
inflammation and 
pupil dilation 

Subconjunctival 
Delivery to anterior and posterior 
segment, site for depot formulations 

Conjunctival and 
choroidal circulation 

Glaucoma, CMV 
retinitis, AMD, PU 

Subtenon 
High vitreal drug levels, relatively 
nonivasive, fewer complications 
unlike intravitreal delivery 

RPE, chemosis, 
subconjunctival 
hemorrhage 

DME, AMD, RVO, 
uveitis 

Retrobulbar 
Administer high local doses like 
anesthetics, more effective than 
peribulbar, minimal influence on IOP 

Retrobulbar hemorrhage, 
globe perforation, 
respiratory arrest 

Anesthesia 

Posterior 
juxtascleral 

Safe for delivery of depot 
formulations, sustain drug levels up to 
6 months to the macula, avoids risk of 
endophthalmitis and intraocular 
damage 

Requires surgery and 
RPE acts as barrier 

AMD 

BA bioavailability, BAB blood–aqueous barrier, BRB blood–retinal barrier, AMD age-related macular degeneration, DME 
diabetic macular edema, BRVO branched retinal vein occlusion, CRVO central retinal vein occlusion, RVO retinal vein 
occlusion, CME cystoid macular edema, UME uveitic macular edema, CMV cytomegalovirus, IOP intraocular pressure, 
TASS toxic anterior segment syndrome, TECDS toxic endothelial cell destruction syndrome, RPE retinal pigmented 
epithelium, PU posterior uveitis 
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the various  routes of  administration [12] as well as 
the complexity of ocular pharmacokinetics [46] 
have been reviewed elsewhere. Briefly, topical 
ocular administration is generally the preferable 
route for patients based on ease of administration 
and can be used for the treatment of a variety of 
ocular diseases. However, invasive techniques (i.e. 
intravitreal or intracameral injections) need to be 
employed for diseases such as age-related macular 
degeneration (AMD), retinal vein occlusion, or 
macular edema. 
 
TRANSPORTERS AND THEIR ROLE IN 
FUNCTIONING OF THE EYE 
 
The eye is an important sensory organ and is one of 
the very few which come in direct contact with the 
environment. One can therefore appreciate the role 
of transporters as a defense mechanism preventing 
the entry of foreign and/or possibly toxic 
xenobiotics into the eye, which could disrupt vision 
[8-10]. To date transporters in the eye and their role 
in ophthalmic drug delivery have not been well 
characterized.  
 In addition to serving as a defensive 
mechanism, transporters also help maintain pH, 
ionic and osmotic equilibrium in the eye [47-50]. 
Membrane transporters regulate the levels of ions, 
glucose and vitamins to maintain homeostasis in the 
eye [51]. A disruption of these mechanisms leads to 
various conditions including cataract [51]. In a 
similar fashion, inhibition and activation of 
transporters in various matrices of the eye could 
lead to safety issues. For example, inhibition of the 
glucose transporter, found in the lens and the 
conjunctiva could lead to disruption of the 
homeostasis of the lens [51]. 
 Cellular transporters play an important role in 
the disposition of drugs at the site of therapeutic 
action. An efflux transporter could limit the amount 
of drug reaching the target ocular tissue limiting 
their efficacy, while an uptake transporter could 
result in elevated levels of a drug in a particular 
tissue. Ophthalmic drug transporters have been the 
subject of investigation and the published literature 
indicates that they play a role in ophthalmic drug 
delivery. In the following sections we present 
information on ocular transporters known to be 
expressed in the eye, dividing them into anterior 
and posterior segments. A brief review is provided, 
of in vitro and in vivo techniques used to study 

transporters and evidence of the role of ocular 
transporters. 
 
Current Technologies to Study Ocular Drug 
Transporters  
 
In vitro Methodologies 
A variety of in vitro techniques have been 
employed to investigate the expression, localization 
and function of transporters. Techniques like PCR, 
Western blotting and immunohistochemistry are 
used to study the expression of transporters and 
their localization in various tissues [52, 53]. To 
determine their functionality, current technologies 
on transporters utilize either inhibition or substrate 
transport studies (done as a monolayer or in 
suspension). Transport studies with compounds in 
transfected cell lines, vesicles from insects, 
transporter cDNA expressing insect membranes and 
oocytes are used to identify the substrate nature of 
compounds and to determine their kinetics [54-57]. 
Inhibition studies can also be conducted using the 
afore mentioned techniques. These studies reveal 
the substrate or inhibitor nature of a compound, as 
well as the nature of inhibition (competitive against 
non-competitive). 
 Corneal cell lines from humans and animal 
species [49, 52, 53, 58-63], are available to study 
drug permeability and drug transporters. The role of 
transporters in conjunctival cell lines like HCjE 
(human conjunctival epithelial cells), CJVE (rabbit 
conjunctival epithelial cells) has also been 
demonstrated [58, 59, 64]. The studies with HCLE 
(human cornea limbal epithelial cells) and HCjE 
cells were the first to show the expression of 
OCTN1 and OCTN2 in these cell lines and 
demonstrated the role of OCTN2 in the active 
transport of L-carnitine transport. The studies with 
CJVE cell line demonstrated the function of novel 
sodium dependent and sodium independent 
transport mechanisms for synthetic and endogenous 
opioids. The permeability of compounds across 
retinal cell lines like ARPE-19 and retinoblastoma 
cells [65, 66] has also been investigated. The study 
revealed the presence and expression of a new 
oligopeptide transporter (SOPT2), which 
transported synthetic opioid (DADLE) with partial 
sodium dependence. Such in vitro systems become 
useful to determine the permeability of compounds 
and the role of transporters across these barriers. 
The use of in vitro studies to characterize the 
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capacity of a compound to act as a substrate or 
inhibitor of a particular transporter provides 
information about its ability to reach the intended 
site of action. Furthermore, these studies provide 
understanding about the kinetics of the process, the 
possible interactions and the potential clinical 
relevance. 
 
In vivo and Ex vivo Methodologies 
Both in vivo and ex vivo methodologies are also 
used to study transporters. Inhibition and 
saturability studies are done with wild type animals 
to determine in vivo kinetics of transporters. Drug-
drug interaction potential can also be tested using 
transporter knock-out or transgenic animals [67-71], 
which are deficient in a particular transporter 
compared to the wild type animal. Studying the 
pharmacokinetics of the compound in the two 
models simultaneously gives a measure of the 
contribution of the transporter to the maximal 
concentration (Cmax) and area under the 
concentration-time curve (AUC) of the compound. 
In vivo studies to investigate the role of ocular 
transporters have been conducted in rabbits [72]. 
The role of P-gp was well demonstrated by 
investigating the pharmacokinetics of quinidine and 
erythromycin in rabbits [72, 73]. The role of MRP5 
in rabbits was also studied using acyclovir as a 
model substrate [53]. Potential ocular or ocular-
systemic drug-drug interactions can also be 
investigated using such in vivo and ex vivo 
methodologies [74, 75]. Some of the ocular tissues 
including cornea and retina can be excised and the 
permeability of compounds studied across the 
sections. Ex vivo studies with isolated cornea [49, 
61, 62] and isolated retina [65, 76] have been 
conducted to determine the permeability of 
molecules and the role of transporters.  
 Some of the new technologies  being 
explored to study transporters involve the use of 
antibodies to knock out transporters and study their 
role in drug pharmacokinetics [77]. A second 
technique is the inhibition of transporters, using 
siRNA [78, 79], to study the role of transporters. 
These are fairly new techniques which have not 
been thoroughly investigated for ophthalmic drug 
delivery. In vitro and ex vivo techniques can be used 
to rank order compounds. In conjunction with in 
vivo studies, the in vitro and ex vivo data can be 
used to conduct in vitro-in vivo correlations 
(IVIVC). Further refinement of these techniques 

needs to be conducted to adapt them to study the 
role of transporters in the eye. 
 
Transporters in the Anterior Segment of the Eye  
The tissues/matrices in the anterior segment of the 
eye are conjunctiva, cornea, aqueous humor, lens, 
lens capsule, iris, ciliary body and trabecular 
meshwork. Transporters are known to be expressed 
in the conjunctiva, cornea, lens, iris and ciliary 
body. However, our major focus will be on 
transporters in the conjunctiva and cornea while 
only mentioning the transporters in the lens and 
ICB [47, 49, 51, 80-84]. 
 
Drug Transporters in the Conjunctiva 
As most of the topical ocular administered drugs 
and xenobiotics come in contact with the 
conjunctiva, it is very well equipped to regulate 
their absorption into the eye and presents one of the 
very first barriers to topical ocular drug delivery. 
Yang et al. demonstrated the role of P-gp in 
limiting propranolol transport in rabbit conjunctival 
epithelial cells [80]. They also demonstrated the 
expression, localization and function of MRP1 in 
rabbit conjunctival epithelial cells [81]. Ueda et al. 
demonstrated the function of organic cation 
transporting system in excised pigmented rabbit 
conjunctiva [47]. Garrett et al. demonstrated the 
expression and localization of OCTN1 and OCTN2 
in human corneal and conjunctival cells, as well as 
their role in carnitine uptake [59]. An excellent 
review on the role of conjunctiva in ocular drug 
delivery is available [48]. Figure 1 shows some of 
the transport processes that take place in the 
conjunctival epithelium. 
 Presence and activity of other relevant 
transporters like PepT1 and PepT2 in pigmented 
rabbit conjunctiva was reported by Sun et al. [85], 
while Basu et al. demonstrated their function in 
cultured rabbit conjunctival epithelial cells [86]. 
Other transporters and ion and fluid transport 
mechanisms exist in the conjunctiva.  
 
Drug Transporters in the Cornea 
Transporters in the corneal epithelium are outlined 
in Figure 2 [9]. There are both uptake and efflux 
transporters, for both large and small molecules 
which can influence drug exposures. These 
transporters serve to transfer molecules across the 
epithelium in either direction (towards the tear film 
or   towards   the   aqueous    humor).     Studies   on 
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Figure 1: Ion and solute transport processes in the conjunctiva. Some transport processes (e.g. Na+-independent, carrier-
mediated processes) are not shown for clarity, especially those localized at the serosal (or basolateral) aspect of the 
conjunctiva. Reproduced from Hosoya et al. [48] with permissions. 
 
 
acyclovir and acyclovir prodrugs demonstrated not 
only that peptide transporters like PepT1 are present 
on the corneal epithelium, but also play an active 
role in the transport of these prodrugs. The presence 
of a facilitative transporter, OATP2A1, has been 
demonstrated in cornea, conjunctiva, iris and ciliary 
body and its role in the permeability of both 

latanoprost and its free acid metabolite was reported 
[87]. Vakkalagadda et al. demonstrated the 
expression and functionality of LAT1 (sodium 
independent neutral amino acid transporters) in 
excised rabbit cornea and the SIRC cell line [49]. 
 The role of efflux transporters like MRP1, 
MRP2  and  MRP5, using  MDCK  cell  lines  over- 
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Figure 2: Currently known functional transporters in the corneal epithelium. MDR1- P-glycoprotein; CNT3- Concentrative 
nucleoside transporter 3; PEPT1- Peptide transporter1; MCTa- Monocarboxylate transporter a; LAT- L- amino acid 
transporter; ATB- Sodium dependent amino acid transporter; ASCT1- Alanine Serine Cysteine Transporter1. Reproduced 
from Mannermaa et al. with permissions [9]. 
 
 
expressing these transporters and excised rabbit 
cornea in the transport of prostaglandin analogues 
was also demonstrated [82]. The role of MRP5 in 
ocular uptake has been shown using acyclovir in 
human and rabbit corneal epithelial cells as well as 
ex vivo and in vivo studies in rabbits [53]. 
Furthermore, the efflux nature of P-gp and MRP2 in 
rabbit cornea and their action on erythromycin have 
also been reported [73, 88, 89]. Vellonen et al. 
reported significant expression and localization of 
MRP1, MRP5 and BCRP in human corneal 
epithelium; with no significant expression of MDR1 
(P-gp), MRP2, MRP3, MRP4 and MRP6 [90], 
which agrees with previous reports [91]. 
 Vellonen et al. [90] studied the expression 
and function of monocarboxylate transporters in 
human corneal epithelial and rabbit cornea cells. 
They demonstrated that MCT1 and MCT4 played a 
role in L-lactic acid and benzoic acid permeability 

and could be subjected to inhibition by employing 
inhibitors [92]. 
  
Drug Transport in the Iris-ciliary Body (ICB) and 
the Lens 
The lens is rich in nutrient transporters and ion 
channels to maintain the osmotic and refractive 
nature. A glucose transporter was shown to be 
present in the ciliary body of human and rat eye 
[93], and a nucleoside transporter was demonstrated 
in rabbit ICB [94]. Amino acid transporters, 
potassium chloride co-transporters (KCC), glucose 
transporter (GLUT1 and GLUT 3) and vitamin C 
transporter have been identified in the lens to date 
[50, 51, 83, 84, 95, 96]. The presence and function 
of these and other transporters in the anterior 
segment tissues indicate an integral role for the 
transporters in the functioning of the eye.  
 



J Pharm Pharm Sci (www.cspsCanada.org) 16(5) 683-707, 2013 
 
 
 

 

689 

Transporters in the Posterior Segment of the 
Eye 
 
Drug Transporters in the Retinal Pigmented 
Epithelium (RPE) and Retina 
P-gp expression and functional activity has been 
identified in RPE [72, 97-99]. For instance, P-gp 
was detected (presence of mdr1 mRNA) by 
RT-PCR in cultured human RPE and it was 
suggested that the basolateral P-gp would protect 
the neural retina by expelling unwanted substances 
from the subretinal space [97]. However, it was also 
reported that P-gp was present in the apical surface 
as well, which could indicate additional functions in 
the RPE [97]. Similarly, using the same approach it 
was determined that P-gp is expressed in the human 
RPE cells lines: D407 and h1RPE, but not in 
ARPE19. However, functional P-gp was only 
demonstrated in D407 cells [98]. 
 MRP1 was expressed and identified in human 
retinal pigment epithelial (ARPE-19) cell line and 
primary cultures of human retinal pigment epithelial 
(HRPE) cells [100], as well as in the choroidal side 
of the outer BRB [101]. In the case of peptide 
transporters, ASCT2 (SLC1A5) was expressed in 
retinal Muller cells and it was suggested that this 
transporter also serves as an effluxer of D-serine 
[102]. Similarly, PepT-2 mRNA has been reported 
on retinal Muller cells [103] and also on retina 
when vitreous clearance of cephalosporins was 
studied using ocular microdialysis [104]. 
Furthermore, PHT1 has been reported to be 
expressed in bovine RPE (BRPE), human RPE 
(HRPE) cells, ARPE-19 (human RPE cell line), and 
bovine and human neural retina [105], while PEPT2 
and PHT2 were only expressed in bovine and 
human retina [105]. It has also been reported that 
PEPT2 was identified on the RPE side facing the 
blood compartment [106, 107] and on the retina 
side facing the vitreous humor [103, 107]. For this 
reason, PEPT2 has been proposed as a target to 
increase intracellular concentrations in the retina 
following intravitreal administration or to enhance 
retinal concentrations following systemic 
administration [107]. 
 Retina is considered to be the ocular tissue 
with the highest metabolic rate per weight [108]. 
This is primarily because the retina is considered an 
outgrowth of the developing brain and has similar 
neural constituents that require an active protection 
system as seen in brain tissue [109]. One of these 

protection systems is the blood-retinal barrier 
(BRB), which is formed by tight junctions between 
the cells of the RPE and the endothelial cells of the 
capillaries and prevents the leakage of protein or 
fluid from the vasculature into the retina [110]. For 
instance, Figure 3 represents the transporters at 
another barrier- a barrier to drug delivery to the 
back of the eye, more popularly known as the BRB 
[9]. This figure shows the transporters at the outer 
and inner blood-retinal barriers. There are multiple 
uptake and efflux transporters and the localization 
of P-gp on both surfaces of the epithelium is 
puzzling and interesting.  The transport across this 
epithelium is also a combination of paracellular, 
transcellular and active transport.  This barrier is 
more complex than the BAB and represents a major 
hurdle for drug delivery to the back of the eye, both 
from topical ocular and non-topical delivery [9]. 
 Furthermore, various glucose transporters 
facilitate the transport of glucose across the blood-
aqueous barrier (BAB) and blood-retinal barrier 
(BRB) [34, 95]. For instance, GLUT1, GLUT3 and 
GLUT4 are high affinity glucose transporters, while 
GLUT 2 is considered a low affinity glucose 
transporter. GLUT5 is a high affinity fructose 
transporter [95]. In the case of GLUT 1 it was 
reported in RPE, choroid, par plasma, lens fiber 
cells and retinal Mueller cells [111]. It has also been 
reported that amino acid transporters including 
glutamate, glycine, GABA, proline and tryptophan 
are present on the retina [107, 112]. The GLUT1 
glucose transporter is expressed in endothelial and 
epithelial barriers like the retinal capillary 
endothelium and RPE, which was studied in 
diabetic and nondiabetic human eyes [113]. 
 Monocarboxylic acid transporters (MCTs), 
which transport pyruvate and lactate, among other 
carboxylic acids have been found in the retina [107, 
114, 115]. Specifically, MCT1 has been reported on 
the apical membrane of rat RPE, while MCT3 has 
been described on the basolateral membrane [116]. 
Recently, a folate receptor (FR), which is a 
specialized carrier-mediated active transporter 
system, has been described in human derived 
retinoblastoma cell line (Y-79) [117]. Similarly, in 
the same cell line biotin has been reported to be 
transported via a human sodium dependent 
multivitamin transporter (hSMVT), which is a 
specialized carrier-mediated system for biotin 
uptake into retinoblastoma cells [118]. The same 
research group also reported a riboflavin transporter  
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Figure 3: Schematic picture of the retina and of the transporters of outer and inner blood-retinal barriers. Abbreviations: 
ILM- inner limiting membrane; NFL- nerve fiber layer; IPL- inner plexiform layer; PL- outer plexiform layer; ONL- outer 
nuclear layer; OLM- outer limiting membrane; POS- photoreceptor outer segments; RPE- retinal pigment epithelium; BM- 
Bruchs membrane; CHR- choroids; MDR1- P-glycoprotein; MRP1- Multidrug resistance associated protein 1 transporter; 
OCT- Organic cation transporter; MCTa- Monocarboxylate transporter a; LAT- L- amino acid transporter; ATB- Sodium 
dependent amino acid transporter; OATP- Organic anion transporting polypeptide; BCRP- Breast cancer resistance protein 
transporter; CRT- Creatine Transporter; ENT- Equilibrative nucleoside transporter; GAT- gamma amino butyric acid 
transporter; TauT- Taurine Transporter. Reproduced from Mannermaa et al. [9] with permission. 
 
 
in Y-79 cells, which is a transporter system that is 
regulated by protein kinase A and Ca2+/calmodulin 
pathways [119]. 
 It needs to be mentioned that the water 
transport across the RPE and other ocular tissues 
has been reviewed elsewhere [109]. Briefly, the 
water transport across the RPE is mediated via an 
active solute-linked water transport via 
monocarboxylate transporter (MCT1 and MCT3) 
and via osmotic and hydrostatic forces that 
determine the other two passive mechanisms for 
water transport [109]. 
 
ROLE OF TRANSPORTERS IN OCULAR 
DRUG DELIVERY - FRONT AND BACK OF 
THE EYE  
 
As stated above there is the presence of efflux and 
influx transporters in various ocular cell lines and 

tissues. While the efflux transporters lower the 
bioavailability of a drug by effluxing it out of the 
cell membrane and cytoplasm, the influx 
transporters will facilitate the translocation of a 
drug across biological membranes. Therefore, it can 
be understood that transporters play a crucial role 
for ocular drug delivery. It needs to be understood 
that the permeation of a drug through the eye will 
be dependent on the passive transport of the 
administered drug and its concentration gradient 
[9]. Keeping in mind that active transport is against 
the concentration gradient and needs energy, careful 
consideration needs to be taken for an ophthalmic 
drug, considering that transporter proteins may 
become saturated at high concentrations. This is 
highly relevant after intravitreal injection when 
there is a high local concentration in the vitreous 
humor. It needs to be mentioned that choroidal 
vessels present fenestrations from  which a drug can 
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escape this vasculature and leak out to the RPE and 
then reach the neural retina and vitreous humor. 
Thus, a drug can enter the vitreous humor and retina 
via the retinal capillaries or the blood stream of the 
choroid [9, 120].  
 The gene expression of both uptake and 
efflux transporters in different parts of the eye was 
measured by Zhang et al. [121]. Based on their 
findings, MRP1 seems to be a more important 
efflux transporter for the eye compared to P-gp. 
However, as is the usual case, more attention has 
been devoted to P-gp than to MRP1 in functional 
assays. As far as the facilitative transporters are 
concerned, OATPs, PEPT2, OCTs, OCTNs seem to 
be important for the eye. Though the expression, 
presence and localization of these transporters have 
been studied by Zhang et al. [121], the functional 
activity of all these transporters has not been well 
characterized. In other words, the presence or 
expression of a transporter indicates that the 
transporters might be functionally active, but does 
not guarantee it. The functional activity also needs 
to be demonstrated. 
 As presented, many of the ocular transporters 
have been cloned and expressed in various ocular 
cell lines and tissues. Some of them are involved in 
various processes including absorption, distribution 
and excretion of ophthalmic drugs. Because this is a 
very active field of study, various drug delivery 
approaches are taken to develop more effective 
therapeutic agents. The challenges to effectively 
deliver drugs to the posterior part of the eye 
following topical ocular administration are well 
known. The first barrier is the high tear turnover 
rate which will wash off or dilute the dose of the 
administered drug causing precorneal loss [10]. 
Then, there is the presence of efflux and influx 
transporters in the eye, the blood-aqueous barrier 
(BAB) and blood-retinal barrier (BAB). Presented 
below will be various approaches that have been 
pursued to circumvent these issues. For example, 
transporter-targeted prodrug delivery has been 
utilized to improve bioavailability in the eye. 
 
Efflux Transporters 
Some of the efflux transporters that have been 
characterized in ocular cell lines and tissues include 
P-gp in cornea, conjunctiva and RPE cell lines [73, 
80, 122-124]; MRP1 in rabbit conjunctival 
epithelial cells and RPE [81, 100], MRP2 [89] and 
MRP5 [53] in corneal epithelium; as well as BCRP 

[52] also in the corneal epithelium.  
 To date, the role of P-gp has been the most 
studied, as was the case with oral route of drug 
delivery. The localization and functional activity of 
P-gp and MRP in porcine eyes was demonstrated 
[101]. The molecular evidence and functional 
expression of MRP2 in human corneal epithelium 
and rabbit cornea and its role in ocular drug efflux 
was demonstrated [125]. Dey et al. [73] 
demonstrated the effect of P-gp in erythromycin 
pharmacokinetics in rabbit and human cornea. The 
corneal AUC of erythromycin in the presence of 
testosterone, a P-gp inhibitor, was significantly 
increased indicating a role for P-gp in influencing 
corneal drug bioavailability. MRP1 has not received 
much attention despite the evidence presented by 
Zhang et al. [121] and more studies are warranted. 
Some ophthalmic relevant drugs with their mode of 
administration along with the uptake and efflux 
transporters affecting their disposition is given in 
Table 2 [9]. 
 
Influx Transporters 
In the case of ocular influx transporters there are 
mainly amino acid and peptide transporters [12]. 
For instance, ASCT1 (SLC1A4), a neutral amino 
acid transporter that belongs to the SLC1 gene 
family has been detected in rabbit cornea and in 
rPCEC (rabbit primary corneal epithelial cells) [63]. 
Similarly, ASCT2 (SLC1A5) was expressed in 
retinal Muller cells and it was suggested that this 
transporter also serves as an effluxer of D-serine 
[102]. The neutral and cationic amino acid 
transporter B0,+ (SLC6A14) has been found to be 
expressed in rabbit cornea, rabbit corneal 
epithelium and human cornea and to be involved in 
the L-arginine transport across corneal epithelium 
[126] but also across pigmented rabbit conjunctiva 
[127]. Furthermore, the Na+-independent large 
neutral amino acid transporter LAT1 (SLC7A5) 
was identified in human and rabbit cornea [49], 
while LAT2 (SLC7A8) was identified in the 
posterior segment [using an in vitro human model 
using  RPE  cell  line  (hTERT-RPE)]  [128]  and in 
ARPE-19 cells where it was determined to be 
involved in L-phenylalanine transport [129].  
 The peptide transporters are proton coupled 
transporters that contribute to the translocation of 
di- and tripeptides across the epithelium [130] and 
are mainly classified into PepT1, PepT2 and 
peptide/histidine   transporters  (PHT1  and   PHT2) 
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Table 2: Selected ocular drugs and suggested interactions with transporters. Reproduced from Mannermaa et al. [9]. 
 

 Drug 
Mode of 
Administration 

Transportera References 

Antibiotics 

Ampicillin 
Topical, intravitreal, 
subconjunctival 

Mouse Npt1, PEPT1, rat Pept2 [95, 166, 167] 

Carbenicillin 
Topical, intravitreal, 
subconjunctival 

Rat Oat1, rabbit OAT [168, 169] 

Cefazolin 
Topical, intravitreal, 
subconjunctival 

OAT1, OAT2, OAT3, OAT4 [170, 171] 

Ceftazidime 
Intravitreal, 
subconjunctival 

Rat Oat1 [168] 

Penicillin G 
Topical, 
subconjunctival 

OAT1, OAT3, OAT4, OATP1B1, OATP1B3, rat 
Oatp1a1, rat Oat1a3_v2, NPT1, PEPT1 

[172-181] 

Ciprofloxacin Topical, intravitreal 
BCRP, rabbit MCT, mouse MRP-like transporter, 
rat Oct1 

[115, 182-186] 

Norfloxacin Topical BCRP [185] 

Levofloxacin Topical 
Mouse MRP-like transporter, OCT2-A, rat 
Oatp1a3_v2, P-gp 

[178, 183, 184, 187, 
188] 

Ofloxacin Topical BCRP, rabbit MCT, MRP1, rat Oct, rat P-gp [115, 185, 189-191] 

Erythromycin 
Topical, intravitreal, 
subconjunctival 

MRP1, OAT2, OATP1A2, rat Oatp1a4, rat 
Oatp1b2, P-gp 

[189, 192-195] 

Tetracycline Topical OAT1, OAT2, OAT3, OAT4 [196] 
Fusidate Topical Rat Bsep, rat Mrp2 [197] 
Antifungal agents 
Clotrimazole Topical MRP1 [198] 

Miconazole 
Topical, intravitreal, 
subconjunctival 

P-gp [199] 

Anti-viral drugs 
Acyclovir Topical OAT1, rat Oat1, OCT1 [200, 201] 
Cidofovir Intravitreal, systemic OAT1, rat Oat1 [202, 203] 
Foscarnet Intravitreal, systemic Rat Mct1, mouse Npt1 [167, 204] 
Ganciclovir Intravitreal, systemic MRP4, OAT1, OCT1 [201, 205] 
Idoxuridine Topical Rat Cnt1, rabbit CNT3 [206, 207] 
Trifluridine Topical Rat Oat1 [200] 
Valacyclovir Systemic Mouse ATB0,+, OAT3, human PEPT1, rat Pept2 [201, 208-210] 

Zidovudine (AZT) Systemic 
BCRP, rat Cnt1, MRP4, OAT1, rat Oat1, OAT2, 
OAT3, OAT4, rat Oat1p1a3_v1, rat Oatp1a3_v2 

[200, 201, 211-215] 

Anti-inflammatory agents 

Dexamethasone 
Topical, intravitreal, 
subconjunctival 

BCRP, OATP1A2, rat Oatp1a1, rat Oatp1a3_v2, 
P-gp 

[177, 216-221] 

Hydrocortisone Topical Rat Oatp1a1, P-gp [222, 223] 
Methylprednisolon
e 

Subconjunctival P-gp [218] 

Prednisolone Topical OATP1B3b, rat Oatp1a1, rat Oatp1a3_v2, P-gp [178, 181, 218, 221] 
Triamcinolone Intravitreal BCRPc [216, 217] 
Nonsteroidal anti-inflammatory drugs (NSAIDs) 

Diclofenac Topical 
OAT1, OAT2, OAT3, OAT4, OCT1, rat Oat2, 
rabbit MCT 

[115, 174, 215, 224] 

Flurbiprofen Topical Rabbit MCT, OAT1 [115, 225] 
Antifibrotic agents 

5-Fluorouracil 
Topical, intravitreal, 
subconjunctival 

MRP5, MRP8 [226, 227] 

   
 

Cont'd. 
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Table 2 Cont'd. 

 Drug 
Mode of 
Administration 

Transportera References 

Antiglaucoma drugs 
Carbachol Topical Rabbit OCT [47] 
Brimonidine Topical OCT [47, 228] 
Dipivefrine Topical Rabbit OCT [47] 
Timolol Topical OCT, P-gp [229, 230] 
Unosprostone 
carboxylated 

Topical OATP1A2, OATP2B1, OATP4A1 [231] 

H1 receptor antagonists 
Azelastine Topical P-gp [232] 
Ketotifen Topical P-gp [233] 
Immunomodulators 

Cyclosporine Topical 
BCRP, MRP1, MRP2, OATP1B1, OATP1B3, 
OATP2B1m rat Oatp1a1, rat Oatp1a4, P-gp 

[180, 181, 234-237] 

Diagnostic agents 
Fluorescein Topical, intravenous MCT, MRP1, OAT1, mouse Oat3 [238-243] 
Systemic: oral (PO) or intravenous (IV) 
aCapital letters; human transporter 
bPrednisolone phosphate 
cContradictory findings 
dDe-esterified form 
 
 
[34]. The peptide transporters PEPT1 and PEPT2 
have been detected on clonetics human corneal 
epithelium (cHCE) and on human cornea [121, 
131]. Furthermore, PepT-2 mRNA has been 
reported on retinal Muller cells [103] and also on 
retina when vitreous clearance of cephalosporins 
were studied using ocular microdialysis [104]. 
Various drugs have been reported to be substrates 
of these transporters; for instance, β-lactam 
antibiotics, and renin- and ACE-inhibitors are 
substrates for PepT1 and PepT2 [34]. More studies 
to correlate protein expression and localization of 
peptide transporters to transport activity are 
necessary to better understand their relevance to 
ocular drug delivery. Nevertheless, 
monocarboxylate (SLC16), organic cation/anion 
(SLC22), nucleoside (SLC28 and SLC29), and 
vitamin transporters have been reported in various 
ocular tissues [12, 61, 132-134]. Atluri et al. 
demonstrated the role of an oligopeptide transporter 
in glycosarcosine ocular bioavailability. The 
transporter inhibitors decreased the ocular 
bioavailability of glycosarcosine [106]. 
 As described above there are various 
transporters that have been identified in ocular cell 
lines and tissues. Therefore, various approaches 

have been pursued to circumvent efflux transporters 
or to take advantage of the influx transporters. The 
most common approach is using transporter-
targeted prodrugs (Table 3) [12]. This approach has 
led to improvements in ocular bioavailability of 
various drugs since it takes advantage of the ocular 
influx transporters or due to changes in 
physicochemical properties in the prodrugs or by a 
combination of these two factors. In general, the 
prodrugs are recognized by the ocular membrane 
transporters as substrates and allow their 
translocation across the epithelia. So far this 
approach has been undertaken for transporter-
targeted drug delivery to cornea, conjunctiva and 
RPE [12]. For instance, studies on acyclovir and 
acyclovir prodrugs demonstrated not only that 
peptide transporters like PepT1 are present on the 
corneal epithelium, but also play an active role in 
the transport of these prodrugs. The presence of a 
facilitative transporter, OATP2A1, was 
demonstrated in cornea, conjunctiva, iris and ciliary 
body and its role in the permeability of both 
latanoprost and its free acid metabolite was reported 
[87]. More examples are presented in the section 
below. 
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Table 3. Transported-Targeted Prodrugs for Ocular Drug Delivery (modified from Gaudana et al. [12] with permission). 
 

Transporter 
System-targeted 
Tissue/cell Line 

Drug/prodrug 
Employed 

Observation Reference 

B0,+ on the cornea L-asparate ACV 
Four-fold higher transcorneal permeability of  
L-aspartate ACV compared to ACV 

[244] 

B0,+ on the cornea 
Gamma-glutamate-
ACV (EACV) 

Higher aqueous solubility of the prodrug along with the 
transporter recognition 

[245] 

B0,+ on the cornea 
Phenylalanine-ACV 
and EACV 

The prodrugs inhibited the transport of L-argininea 
across the cornea implied that they are substrates of B0,+ 

[126] 

OPT system on the 
cornea 

L-valine ACV 
Three-fold higher transcorneal permeability of  
L-valine ACV compared to ACV 

[157] 

OPT system on the 
cornea 

Gly-Val-GCV, Val-
Val-GCV and Tyr-Val-
GCV 

Significant transcellular passive diffusion and 
transporter recognition resulted in higher AUC and Cmax 

[246, 247] 

OPT system on 
rPCEC cells and 
the cornea 

Val-quinidine and Val-
Val-quinidine 

Prodrugs were not recognized by P-gp efflux pump and 
further found to be substrates of peptide transporters 

[248] 

OPT system on the 
retina 

Gly-Val-GCV, Val-
Val-GCV and Tyr-Val-
GCV 

Two-fold higher RCS tissue permeability than that of 
GCV due to higher lipophilicity and translocation 
mediated by OPT across RPE 

[249] 

SMVT on the 
retina 

Biotin-GCV 
Higher biotin-GCV permeability into the retina-choroid 
and slower elimination from vitreous 

[250] 

GLUT1 on the 
HRPE cells 

Glu-dopamine Transporter recognizes prodrug, not the parent drug [251] 

OPT oligopeptide transporter, SMVT sodium-dependent multiple vitamin transporter, B0,+ amino acid transporter, GLUT 
glucose transporter, rPCEC rabbit primary corneal epithelial cells, HRPE human retinal pigment epithelium cells, RCS 
retina-choroid-sclera, ACV acyclovir, GCV ganciclovir, RPE retinal pigment epithelium 
aSubstrate of B0,+  
 
 
FORMULATION DEVELOPMENT 
INCLUDING PRO-DRUG APPROACH 
EFFECTING TRANSPORTERS  
 
A majority of ocular diseases are treated using 
topical ocular administration. A major drawback of 
this route has been the poor residence time which 
leads to very little drug absorption into the 
intraocular tissues. Viscosifying agents like 
tamarind gum, HPMC, cremophor, CMC, xanthan 
gum, etc., have been investigated and reported to 
increase drug residence time on the surface of the 
eye [135-143]. Some surface active agents like 
benzalkonium chloride and EDTA have been 
investigated for their penetration enhancing ability 
[80, 81, 83, 144-146]. The intent of this section is to 
review any formulation approaches that affect 
transporters to enhance ocular drug exposures and 
bioavailability.  
 Formulation approaches have been used in 
oral and systemic drug delivery to modify 
transporter function and improve systemic 

bioavailability. A good example is Vitamin E-
TPGS which has been used in conjunction with 
amprenavir as an excipient to inhibit P-gp and 
improve the oral bioavailability of amprenavir 
[147]; a study with paclitaxel also demonstrated 
similar results [148]. Other commonly used 
excipients like cyclodextrins, LabrasolTM, 
cremophor, polyethylene glycols (PEGs) and 
pluronics have also been shown to inhibit 
transporters [149-156]. While these approaches 
seem to be common in oral drug delivery, such an 
investigation is lacking in the field of ophthalmic 
drug delivery.  Some of the above mentioned 
excipients like xanthan gum, EDTA, cremophor and 
PEGs, which are used in eye drops for topical 
ocular delivery have been shown to inhibit 
transporters and can potentially play a role in 
increasing ocular tissue exposures. However, 
studies to determine the contribution of transporter 
inhibition and increased residence time/penetration 
enhancement have not been done. Investigations 
into approaches to avoid transporters would be 
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useful to improve ocular drug bioavailability.
 Prodrugs which are metabolized to the active 
moiety in vivo have been used in ocular drug 
delivery (Table 2). Latanoprost, when administered 
via topical ocular route is metabolized in vivo to its 
active form. It was demonstrated that OATP2A1, 
which is expressed in both RPE/choroid and 
anterior segment tissues like cornea, conjunctiva, 
iris and ciliary body, plays a role in the permeability 
of both latanoprost and its free acid metabolite [87]. 
In another study, it was demonstrated that 
bimatoprost and latanoprost and their free acid 
metabolites were substrates of MRP1, MRP2 and 
MRP5, using MDCK cell lines over-expressing 
these transporters and excised rabbit cornea [82]. 
Furthermore, it has been reported that acyclovir 
prodrugs, which utilize both ocular transporter and 
enzyme interplay can be used to deliver drugs to the 
eye [157-159]. 
 
CURRENT AND FUTURE RELEVANCE OF 
OCULAR TRANSPORTERS IN DRUG 
DEVELOPMENT  
 
Many clinically available ophthalmic drugs are 
known to be either substrates or inhibitors of 
transporters, and are presented in this review. While 
the expression and presence of both facilitative and 
efflux transporters has been demonstrated, 
knowledge of their role in affecting ocular 
pharmacokinetics in preclinical species is limited. 
Their relevance to clinical ocular pharmacokinetics 
has not been demonstrated.  
 A drug-drug interaction between 
oral/systemically administered compounds and 
topical ocular administered compounds can occur 
where either of the molecules can be a victim or 
perpetrator of the interaction. Oral and systemically 
administered drugs can distribute to the eye due to 
the action of transporters. These molecules can 
interact with topically administered drugs altering 
their local ocular pharmacokinetics, safety and 
efficacy. In the same way, topically administered 
molecules can affect the ocular distribution of 
orally administered compounds by inhibiting the 
efflux transporters in blood-ocular barriers, of 
which the oral/systemically administered 
compounds are substrates. Hippalgoankar et al. in 
fact showed that such drug-drug interactions are 
possible by studying the interaction between a 

topically administered and systemically 
administered P-gp substrates/inhibitors [74]. Thus, 
these transporters play an important role in 
affecting the ocular disposition of the drugs and 
affect their therapeutic action of the drugs. At the 
same time such oral and systemically administered 
drugs distributing to the eye due to transporter 
mediated drug-drug interactions can cause 
unwanted ocular effects. 
 Interplay between enzymes and transporters, 
like CYP3A4 and P-gp has been well studied [160-
165]. However, the same cannot be said of 
ophthalmic drug delivery. Some of the prodrug 
approaches used in ocular drug delivery, which 
utilize the interplay of enzymes and transporters, 
are mentioned in this review. These studies 
demonstrate that ocular tissue levels of the active 
metabolite can be modified by the action of the 
efflux and facilitative transporters. Such studies 
demonstrate that enzyme transporter interplay is 
possible in ocular drug delivery and needs to be 
further investigated, either to the advantage of drug 
development and delivery or to prevent possible 
pitfalls which can arise due to genetic differences in 
the populations of transporters and enzymes. 
 Molecules which are designed to utilize 
body’s existing transporter systems to improve their 
systemic and target organ/tissue bioavailability can 
be used to improve posterior segment drug 
exposures upon topical ocular delivery as also for 
decreasing systemic drug exposures upon 
intraocular (intravitreal or intracameral) 
administration. Such approaches are currently being 
tested in the clinic with oral drug delivery.  
 
CONCLUSIONS 
 
While the expression and presence of transporters 
in the eye has been well demonstrated, studies to 
understand their role in ocular drug delivery, vis-à-
vis their role in ocular pharmacokinetics, efficacy 
and safety, are only in their infancy. While the role 
of transporters in ocular homeostasis is known, a 
disruption of these mechanisms by drugs modifying 
transporter function needs to be studied. While the 
in vitro and in vivo techniques for investigating the 
role of transporters in ocular drug delivery already 
exist, intensive investigation needs to be carried out 
before their clinical relevance can be elucidated and 
understood.
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